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Chapter 1

Foreword

Abstract: This paper describes a technique that can be used to reduce the
effective entropy in a given GS cookie by roughly 15 bits. This reduction is
made possible because GS uses a number of weak entropy sources that can,
with varying degrees of accuracy, be calculated by an attacker. It is important
to note, however, that the ability to calculate the values of these sources for
an arbitrary cookie currently relies on an attacker having local access to the
machine, such as through the local console or through terminal services. This
effectively limits the use of this technique to stack-based local privilege escala-
tion vulnerabilities. In addition to the general entropy reduction technique, this
paper discusses the amount of effective entropy that exists in services that auto-
matically start during system boot. It is hypothesized that these services may
have more predictable states of entropy due to the relative consistency of the
boot process. While the techniques described in this paper do not illustrate a
complete break of GS, any inherent weakness can have disastrous consequences
given that GS is a static, compile-time security solution. It is not possible to
simply distribute a patch. Instead, applications must be recompiled to take
advantage of any security improvements. In that vein, the paper proposes some
solutions that could be applied to address the problems that are outlined.

Thanks: Aaron Portnoy for lending some hardware for sample collection.
Johnny Cache and Richard Johnson for discussions and suggestions.



Chapter 2

Introduction

Stack-based buffer overflows are generally regarded as one of the most com-
mon and easiest to exploit classes of software vulnerabilities. This prevalence
has lead to the implementation of many security solutions that attempt to pre-
vent the exploitation of these vulnerabilities. Some of these solutions include
StackGuard[1], ProPolice[2], and Microsoft’s /GS compiler switch[5]. The shared
premise of these solutions involves the placement of a cookie, or canary, between
the buffers stored in a stack frame and the stack frame’s return address. The
cookie that is placed on the stack is used as a marker to detect if a buffer over-
flow has occurred prior to allowing a function to return. This simple concept
can be very effective at making the exploitation of stack-based buffer overflows
unreliable.

The cookie-based approach to detecting stack-based buffer overflows involves
three general steps. First, a cookie that will be inserted into a function’s stack
frame must be generated. The approaches taken to generate cookies vary quite
substantially, some having more implications than others. Once a cookie has
been generated, it must be pushed onto the stack in the context of a function’s
prologue at execution time. This ensures that the cookie is placed before the
return address (and perhaps other values) on the stack. Finally, a check must
be added to a function’s epilogue to make sure that the cookie that was stored
in the stack frame is the value that it was initialized to in the function prologue.
If an overflow of a stack-based buffer occurs, then it’s likely that it will have
overwritten the cookie stored after the buffer. When a mismatch is detected,
steps can be taken to securely terminate the process in a way that will prevent
exploitation.

The security of a cookie-based solution hinges on the fact that an attacker
doesn’t know, or is unable to generate, the cookie that is stored in a stack
frame. Since it’s impossible to guarantee in all situations that an attacker won’t



be able to generate the bytes that compose the value of a cookie, it really all
boils down to the cookie being kept secret. If the cookie is not kept secret, then
the presence of a cookie will provide no protection when it comes to exploiting a
stack-based buffer overflow vulnerability. Additionally, if an attacker can trigger
an exploitable condition before the cookie is checked, then it stands that the
cookie will provide no protection. One example of this might include overwriting
a function pointer on the stack that is called prior to returning from the function.

While the StackGuard and ProPolice implementations are interesting and useful,
the author feels that no implementation is more critical than the one provided
by Microsoft. The reason for this is the simple fact that the vast majority of
all desktops, and a non-trivial number of servers, run applications compiled
with Microsoft’s Visual C compiler. Any one weakness found in the Microsoft’s
implementation could mean that a large number of applications are no longer
protected against stack-based buffer overflows. In fact, there has been previous
research that has pointed out flaws or limitations in Microsoft’s implementation.
For example, David Litchfield pointed out that even though stack cookies are
present, it may still be possible to overwrite exception registration records on the
stack which may be called before the function actually returns. This discovery
was one of the reasons that Microsoft later introduced SafeSEH (which had its
own set of issues)[6]. Similarly, Chris Ren et al from Cigital pointed out the
potential implications of a function pointer being used in the path of the error
handler for the case of a GS cookie mismatch occurring[9]. While not directly
related to a particular flaw or limitation in GS, eEye has described some of the
problems that come when secrets get leaked|3].

Even though these issues and limitations have existed, Microsoft’s GS imple-
mentation at the time of this writing is considered by most to be secure. While
this paper will not present a complete break of Microsoft’s GS implementation,
it will describe certain quirks and scenarios that may make it possible to reduce
the amount of effective entropy that exists in the cookies that are generated.
As with cryptography, any reduction of the entropy that exists in the GS cookie
effectively makes it so there are fewer unknown portions of the cookie. This
makes the cookie easier to guess by reducing the total number of possibilities.
Beyond this, it is expected that additional research may find ways to further
reduce the amount of entropy beyond that described in this document. One
critical point that must be made is that since the current GS implementation
is statically linked when binaries are compiled, any flaw that is found in the
implementation will require a recompilation of all binaries affected by it. To
help limit the scope, only the 32-bit version of GS will be analyzed, though it
is thought that similar attacks may exist on the 64-bit version as well.

The structure of this paper is as follows. In chapter 3, a brief description of the
Microsoft’s current GS implementation will be given. Chapter 4 will describe
some techniques that may be used to attack this implementation. Chapter 5
will provide experimental results from using the attacks that are described in
chapter 4. Chapter 6 will discuss steps that could be taken to improve the



current GS implementation. Finally, chapter 7 will discuss some areas where
future work could be applied to further improve on the techniques described in
this document.



Chapter 3

Implementation

As was mentioned in the introduction, security solutions that are designed to
protect against stack-based buffer overflows through the use of cookies tend
to involve three distinct steps: cookie generation, prologue modifications, and
epilogue modifications. Microsoft’s GS implementation is no different. This
chapter will describe each of these three steps independent of one another to
paint a picture for how GS operates.

3.1 Cookie Generation

Microsoft chose to have the GS implementation generate an image file-specific
cookie. This means that each image file (executable or DLL) will have their own
unique cookie. When used in conjunction with a stack frame, a function will
insert its image file-specific cookie into the stack frame. This will be covered in
more detail in the next section. The actual approach taken to generate an image
file’s cookie lives in a compiler inserted routine called __security_init_cookie.
This routine is placed prior to the call to the image file’s actual entry point
routine and therefore is one of the first things executed. By placing it at this
point, all of the image file’s code will be protected by the GS cookie.

The guts of the __security_init_cookie routine are actually the most critical
part to understand. At a high-level, this routine will take an XOR’d combination
of the current system time, process identifier, thread identifier, tick count, and
performance counter. The end result of XOR’ing these values together is what
ends up being the image file’s security cookie. To understand how this actually
works in more detail, consider the following disassembly from an application
compiled with version 14.00.50727.42 of Microsoft’s compiler. Going straight to
the disassembly is the best way to concretely understand the implementation,



especially if one is in search of weaknesses.

Like all functions, the __security_init_cookie function starts with a prologue.
It allocates storage for some local variables and initializes some of them to zero.
It also initializes some registers, specifically edi and ebx which will be used
later on.

.text:00403D58 push ebp

.text:00403D59 mov ebp, esp

.text:00403D5B sub esp, 10h

.text:00403D5E mov eax, __security_cookie

.text:00403D63 and [ebp+SystemTimeAsFileTime.dwLowDateTime], O
.text:00403D67 and [ebp+SystemTimeAsFileTime.dwHighDateTime], O
.text:00403D6B push ebx

.text:00403D6C push edi

.text:00403D6D mov edi, OBB40E64Eh

.text:00403D72 cmp eax, edi

.text:00403D74 mov ebx, OFFFF0000h

As part of the end of the code above, a comparison between the current security
cookie and a constant 0xbb40e64e is made. Before __security_init_cookie is
called, the global __security_cookie is initialized to Oxbb40e64e. The constant
comparison is used to see if the GS cookie has already been initialized. If the
current cookie is equal to the constant, or the high order two bytes of the current
cookie are zero, then a new cookie is generated. Otherwise, the complement of
the current cookie is calculated and cookie generation is skipped.

.text:00403D79 jz short loc_403D88

.text:00403D7B test eax, ebx

.text:00403D7D jz short loc_403D88

.text:00403D7F not eax

.text:00403D81 mov __security_cookie_complement, eax
.text:00403D86 jmp short loc_403DE8

To generate a new cookie, the function starts by querying the current sys-
tem time using GetSystemTimeAsFileTime. The system time as represented by
Windows is a 64-bit integer that measures the system time down to a granularity
of 100 nanoseconds. The high order 32-bit integer and the low order 32-bit inte-
ger are XOR’d together to produce the first component of the cookie. Following
that, the current process identifier is queried using GetCurrentProcessId and
then XOR’d as the second component of the cookie. The current thread iden-
tifier is then queried using GetCurrentThreadId and then XOR’d as the third
component of the cookie. The current tick count is queried using GetTickCount
and then XOR’d as the fourth component of the cookie. Finally, the current
performance counter value is queried using QueryPerformanceCounter. Like
system time, this value is also a 64-bit integer, and its high order 32-bit integer
and low order 32-bit integer are XOR’d as the fifth component of the cookie.
Once these XOR operations have completed, a comparison is made between the



newly generated cookie value and the constant Oxbb40e64e. If the new cookie
is not equal to the constant value, then a second check is made to make sure
that the high order two bytes of the cookie are non-zero. If they are zero, then a
10 bit left shift of the cookie is performed in order to seed the high order bytes.

.text:00403D89 lea eax, [ebp+SystemTimeAsFileTime]
.text:00403D8C push eax

.text:00403D8D call ds:__imp__GetSystemTimeAsFileTime@4
.text:00403D93 mov esi, [ebp+SystemTimeAsFileTime.dwHighDateTime]
.text:00403D96 xor esi, [ebp+SystemTimeAsFileTime.dwLowDateTime]
.text:00403D99 call ds:__imp__GetCurrentProcessId@0
.text:00403D9F Xor esi, eax

.text:00403DA1 call ds:__imp__GetCurrentThreadId@0
.text:00403DA7 Xor esi, eax

.text:00403DA9 call ds:__imp__GetTickCount@0O

.text :00403DAF xor esi, eax

.text:00403DB1 lea eax, [ebp+PerformanceCount]

.text:00403DB4 push eax

.text:00403DB5 call ds:__imp__QueryPerformanceCounter@4
.text:00403DBB mov eax, dword ptr [ebp+PerformanceCount+4]
.text:00403DBE xor eax, dword ptr [ebp+PerformanceCount]
.text:00403DC1 Xor esi, eax

.text:00403DC3 cmp esi, edi

.text:00403DC5 jnz short loc_403DCE

.text:00403DCE loc_403DCE:

.text:00403DCE test esi, ebx
.text:00403DD0O jnz short loc_403DD9
.text:00403DD2 mov eax, esi
.text:00403DD4 shl eax, 10h
.text:00403DD7 or esi, eax

Finally, when a valid cookie is generated, it’s stored in the image file’'s __security_cookie.
The bit-wise complement of the cookie is also stored in __security_cookie_complement.
The reason for the existence of the complement will be described later.

.text:00403DD9 mov __security_cookie, esi

.text :00403DDF not esi

.text:00403DE1 mov __security_cookie_complement, esi
.text:00403DE7 pop esi

.text:00403DE8 pop edi

.text:00403DE9 pop ebx

.text:00403DEA leave

.text:00403DEB retn

In simpler terms, the meat of the cookie generation can basically be summarized
through the following pseudo code:

Cookie = SystemTimeHigh
Cookie "= SystemTimeLow
Cookie ~= ProcesslId



Cookie “= Threadld
Cookie ~= TickCount
Cookie "= PerformanceCounterHigh
Cookie “= PerformanceCounterLow

3.2 Prologue Modifications

In order to make use of the generated cookie, functions must be modified to
insert it into the stack frame at the time that they are called. This does add
some overhead to the call time associated with a function, but its overall effect
is linear with respect to a single invocation. The actual modifications that are
made to a function’s prologue typically involve just three instructions. The
cookie that was generated for the image file is XOR’d with the current value
of the frame pointer. This value is then placed in the current stack frame at a
precisely chosen location by the compiler.

.text:0040214B mov eax, __security_cookie
.text:00402150 xor eax, ebp
.text:00402152 mov [ebp+2A8h+var_4], eax

It should be noted that Microsoft has taken great care to refine the way a stack
frame is laid out in the presence of GS. Locally defined pointers, including func-
tion pointers, are placed before statically sized buffers in the stack frame. Addi-
tionally, dangerous input parameters passed to the function, such as pointers or
structures that contain pointers, will have local copies made that are positioned
before statically sized local buffers. The local copies of these parameters are
used instead of those originally passed to the function. These two changes go a
long way toward helping to prevent other scenarios in which stack-based buffer
overflows might be exploited.

3.3 Epilogue Modifications

When a function returns, it must check to make sure that the cookie that
was stored on the stack has not been tampered with. To accomplish this, the
compiler inserts the following instructions into a function’s prologue:

.text:00402223 mov ecx, [ebp+2A8h+var_4]
.text:00402229 Xor ecx, ebp

.text:0040222B pop esi

.text:0040222C call __security_check_cookie

The value of the cookie that was stored on the stack is moved into ecx and then
XOR’d with the current frame pointer to get it back to the expected value. Fol-
lowing that, a call is made to __security_check_cookie where the stack frame’s



cookie value is passed in the ecx register. The __security_check_cookie rou-
tine is very short and sweet. The passed in cookie value is compared with the
image file’s global cookie. If they don’t match, __report_gsfailure is called
and the process eventually terminates. This is what one would expect in the
case of a buffer overflow scenario. However, if they do match, the routine simply
returns, allowing the calling function to proceed with execution and cleanup.

.text:0040634B cmp ecx, __security_cookie
.text:00406351 jnz short loc_406355
.text:00406353 rep retn

.text:00406355 loc_406355:

.text:00406355 jmp __report_gsfailure

10



Chapter 4

Attacking GS

At the time of this writing, all publicly disclosed attacks against GS that the
author is aware of have relied on getting control of execution before the cookie
is checked or by finding some way to leak the value of the cookie back to the
attacker. Both of these styles of attack are of great interest and value, but the
focus of this paper will be on a different method of attacking GS. Specifically,
this chapter will outline techniques that may be used to make it easier to guess
the value an image file’s GS cookie. Two techniques will be described. The first
technique will describe methods for calculating the values that were used as
entropy sources when the cookie was generated. These calculations are possible
in situations where an attacker has local access to the machine, such as through
the console or through terminal services. The second technique describes the
general concept of predictable ranges of some values that are used in the context
of boot start services, such as lsass.exe. This predictability may make the
guessing of a GS cookie more feasible in both local and remote scenarios.

4.1 Calculating Entropy Sources

The sources used to generate the GS cookie for a given image file are constant
and well-known. They include the current system time, process identifier, thread
identifier, tick count, and performance counter. In light of that fact, it only
makes sense to investigate the amount of effective entropy each source adds to
the cookie. Since it’s a requirement that the cookie produced be secret, the
ability to guess a value used in the generation of the cookie will allow it to be
canceled out of the equation. This is true due to the simple fact that each of
the values used to generate the cookie is XOR’d with each other value (XOR
is a commutative operation). The ability to guess multiple values can make it
possible to seriously impact the overall integrity of the cookie.
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While the sources used in the generation of the cookie have long been regarded
as satisfactory, the author has found that the majority of the sources actually
contribute little to no value toward the overall entropy of the cookie. However,
this is currently only true if an attacker has local access to the machine. Being
able to know a GS cookie that was used in a privileged process would make it
possible to exploit a local privilege escalation vulnerability, for example. There
may be some circumstances where the techniques described in this section could
be applied remotely, but for the purpose of this document, only the local scenario
will be considered. The following subsections will outline methods that can be
used to calculate or deterministically find the specific values that were used
when a cookie was being generated in a particular process context. As a result
of this analysis, it’s become clear that the only particular variable source of true
entropy for the GS cookie is the low 17 bits of the performance counter. All
other sources can be reliably calculated, with some margin of error.

For the following subsections, a modified executable named vulnapp.exe was
used to extract the information that was used at the time that a process exe-
cutable’s GS cookie was generated. In particular, __security_init_cookie was
modified to jump into a function that saves the information used to generate
the cookie. The implementation of this function is shown below for those who
are curious:

//
// The FramePointer is the value of EBP in the context of the
// __security_init_cookie routine. The cookie is the actual,
// resultant cookie value. GSContext is a global array.
//
VOID DumpInformation(

PULONG FramePointer,

ULONG Cookie)

{
GSContext[0] = FramePointer[-3];
GSContext[1] = FramePointer[-4];
GSContext[2] = FramePointer[-1];
GSContext [3] = FramePointer[-2];
GSContext[4] = GetCurrentProcessId();
GSContext[5] = GetCurrentThreadId();
GSContext[6] = GetTickCount();
GSContext[7] = Cookie;

}

4.1.1 System Time

System time is a value that one might regard as challenging to recover. After
all, it seems impossible to get the 100 nanosecond granularity of the system
time that was retrieved when a cookie was being generated. Quite the contrary,
actually. There are a few key points that go into being able to recover the
system time. First, it’s a fact that even though the system time measures
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granularity in terms of 100 nanosecond intervals, it’s really only updated every
15.625 milliseconds (or 10.1 milliseconds for more modern CPUs). To many,
15.625 may seem like an odd number, but for those familiar with the Windows
thread scheduler, it can be recognized as the period of the timer interrupt. For
that reason, the current system time is only updated as a result of the timer
interrupt firing. This fact means that the alignment of the system time that is
used when a cookie is generated is known.

Of more interest, though, is the relationship between the system time value and
the creation time value associated with a process or its initial thread. Since
the minimum granularity of the system time is 15.6 or 10.1 milliseconds, it
follows that the granularity of the thread creation time will be the same. In
terms of modern CPUs, 15.6 milliseconds is an eternity and is plenty long for
the processor to execute all instructions from the creation of the thread to the
generation of the security cookie. This fact means that it’s possible to assume
that the creation time of a process or thread is the same as the system time that
was used when the cookie was generated. This assumption doesn’t always work,
though, and there are indeed cases where the creation time will not equal the
system time that was used. These situations are usually a result of the thread
that creates the cookie not being immediately scheduled.

Even if this is the case, it would be necessary to be able to obtain the creation
time of an arbitrary process or thread. On the surface, this would seem im-
possible because task manager prevents a non-privileged user from getting the
start time of a privileged process, as figure 4.1 shows.

This is all a deception, though, because there does exist functionality that is ex-
posed to non-privileged users that can be used to get this information. One way
of getting it is through the use of the native API routine NtQuerySystemInformation.
In this case, the SystemProcessesAndThreadsInformation system information
class is used to query information about all of the running processes on the sys-
tem. This information includes the process name, process creation time, and
the creation time for each thread in each process. While this information class
has been removed in Windows Vista, there are still potential ways of obtaining
the creation time information. For example, an attacker could simply crash the
vulnerable service once (assuming it’s not a critical service) and then wait for
it to respawn. Once it respawns, the creation time can be inferred based on the
restart delay of the service. Granted, service restarts are limited to three times
per day in Vista, but crashing it once should cause no major issues.

Using NtQuerySystemInformation, it’s possible to collect some data that can
be used to determine the likelihood that the creation time of a thread will
be equal to the system time that was used when a GS cookie was generated.
To test this, the author used the modified vulnapp.exe executable to extract
the system time at the time that the cookie was generated. Following that,
a separate program was used to collect the creation time information of the
process in question using the native API. The initial thread’s creation time was

13



£ Windows Task Manager

File Options Wiew Shut Down  Help

Applications | Processes |Performance Metworking | Users

Irnage Marme User Nare CPU | Mem Usage
winlogon, exe oo 3,472 K
CSFS5,EXe oo 3,252 K
explorer. exe a oo 14,164 K
wscntfy exe a oo 2,764 K
userinit, exe a oo 2,516 K
YMwareTray.exe ... a oo 4,156 K

a 4,296 K

a 4

Processes: 32 CPU Usage: 2% Commit Charge: 183936k | 630352K

Figure 4.1: Task manager disabling access to privileged processes

then compared with the system time to see if they were equal. Figure 4.2 shows
these differences for a sample of 742 cookies taken from a single machine. In
most cases, system time and creation time were equal.

Obviously, the data set describing differences is only relevant to a particular
system load. If there are many threads waiting to run during the time that a
process is executed, then it is unlikely that the system time will equal the process
creation time. In a desktop environment, it’s probably safe to assume that the
thread will run immediately, but more conclusive evidence may be necessary.

Given these facts, it is apparent that the complete 64-bit system time value can
be recovered more often than not with a great degree of accuracy just by simply
assuming that thread creation time is the same as the system time value.

4.1.2 Process and Thread Identifier

The process and thread identifier are arguably the worst sources of entropy for
the GS cookie, at least in the context of a local attack. The two high order
bytes of the process and thread identifiers are almost always zero. This means
they have absolutely no effect on the high order entropy. Additionally, the pro-
cess and thread identifier can be determined with 100 percent accuracy in a
local context using the same API described in the previous section on getting
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Figure 4.2: Difference between system time and create time

the system time. This involves making use of the NtQuerySystemInformation
native API with the SystemProcessesAndThreadsInformation system infor-
mation class to get the process identifier and thread identifier associated with
a given process executable.

The end result, obviously, is that the process and thread identifier can be deter-
mined with great accuracy. The one exception to this rule would be Windows
Vista, but, as was mentioned before, alternative methods of obtaining the pro-
cess and thread identifier may exist.

4.1.3 Tick Count

The tick count is, for all intents and purposes, simply another measure of time.
When the GetTickCount API routine is called, the number of ticks is multi-
plied by the tick count multiplier. This multiplication effectively translates the
number of ticks to the number of milliseconds that the system has been up. If
one can safely assume that the that the system time used to generate the cookie
was the same as the thread creation time, then the tick count at the time that
the cookie was generated can simply be calculated using the thread creation
time. The creation time isn’t enough, though. Since the GetTickCount value
measures the number of milliseconds that have occurred since boot, the actual
uptime of the system has to be determined.
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To determine the system uptime, a non-privileged user can again make use of the
NtQuerySystemInformation native API, this time with the SystemTime0fDayInformation
system information class. This query returns the time that the system was

booted as a 64-bit integer measured in 100 nanosecond intervals, just like the

thread creation time. To calculate the system uptime in milliseconds, it’s as

simple as subtracting the boot time from the creation time and then dividing

by 10000 to convert from 100 nanosecond intervals to 1 millisecond intervals:

EstTickCount = (CreationTime — BootTime) = 10000

Some experimentation shows that this calculation is pretty accurate, but some
quantity is lost in translation. From what the author has observed, a constant
scaling factor of 0x4e, or 78 milliseconds, needs to be added to the result of this
calculation. The source of this constant is as of yet unknown, but it appears to
be a required constant. This results in the actual equation being;:

EstTickCount = [(CreationTime — BootTime) + 10000] + 78

The end result is that the tick count can be calculated with a great degree of
accuracy. If the system time calculation is off, then that will directly affect the
calculation of the tick count.

4.1.4 Performance Counter

Of the four entropy sources discussed so far, the performance counter is the only
one that really presents a challenge. The purpose of the performance counter
is to describe the total number of cycles that have executed. On the outside,
the performance counter would seem impossible to reliably determine. After
all, how could one possibly determine the precise number of cycles that had oc-
curred as a cookie was being generated? The answer, of course, comes down to
the fact that the performance counter itself is, for all intents and purposes, just
another measure of time. Windows provides two interesting user-mode APIs
that deal with the performance counter. The first, QueryPerformanceCounter,
is used to ask the kernel to read the current value of the performance counter|8].
The result of this query is stored in the 64-bit output parameter that the caller
provides. The second API is QueryPerformanceFrequency. This routine is
interesting because it returns a value that describes the amount that the per-
formance counter will change in one second[7]. Documentation indicates that
the frequency cannot change while the system is booted.

Using the existing knowledge about the uptime of the system and the calculation
that can be performed to convert between the performance counter value and
seconds, it is possible to fairly accurately guess what the performance counter
was at the time that the cookie was generated. Granted, this method is more
fuzzy than the previously described methods, as experimental results have shown
a large degree of fluctuation in the lower 17 bits. Those results will be discussed
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in more detail in chapter 5. The actual equation that can be used to generate
the estimated performance counter is to take the uptime, as measured in 100
nanosecond intervals, and multiply it by the performance frequency divided
by 10000000, which converts the frequency from a measure of 1 second to 100
nanosecond:

EstPer fCounter = UpTime X (Per fFreq -+ 10000000)

In a fashion similar to tick count, a constant scaling factor of -165000 was
determined through experimentation. This seems to produce more accurate
results in some of the 24 low bits. Based on this calculation, it’s possible to
accurately determine the entire 32-bit high order integer and the first 15 bits of
the 32-bit low order integer. Of course, if the system time estimate is wrong,
then that directly effects this calculation.

4.1.5 Frame Pointer

While the frame pointer does not influence an image file’s global cookie, it does
influence a stack frame’s version of the cookie. For that reason, the frame
pointer must be considered as an overall contributor to the effective entropy of
the cookie. With the exception of Windows Vista, the frame pointer should
be a deterministic value that could be deduced at the time that a vulnerability
is triggered. As such, the frame pointer should be considered a known value
for the majority of stack-based buffer overflows. Granted, in multi-threaded
applications, it may be more challenging to accurately guess the value of the
frame pointer.

In the Windows Vista environment, the compile-time GS implementation gets a
boost in security due to the introduction of ASLR. This helps to ensure that the
frame pointer is actually an unknown quantity. However, it doesn’t introduce
equal entropy in all bits. In particular, octet 4, and potentially octet 3, may
have predictable values due to the way that the randomization is applied to
dynamic memory allocations. In order to prevent fragmentation of the address
space, Vista’s ASLR implementation attempts to ensure that stack regions are
still allocated low in the address space. This has the side effect of ensuring that a
non-trivial number of bits in the frame pointer will be predictable. Additionally,
while Vista’s ASLR implementation makes an effort to shift the lower bits of
the stack pointer, there may still be some bits that are always predictable in
octet 2.
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4.2 Predictability of Entropy Sources in Boot
Start Services

A second attack that could be used against GS involves attacking services that
start early on when the system is booted. These services may experience more
predictable states of entropy due to the fact that the amount of time it takes
to boot up and the order in which tasks are performed is fairly, though not
entirely, consistent. This insight may make it possible to estimate the value of
entropy sources remotely.

To better understand this type of attack, the author collected 742 samples that
were taken from a custom service that was set to automatically start during
boot on a Windows XP SP2 installation. This service was simply designed to
log the state used at the time that the GS cookie was being generated. While
a sampling of the GS cookie state applied to 1sass.exe would have been more
ideal, it wasn’t worth the headache of having to patch a critical system service.
Perhaps the reader may find it interesting to collect this data on their own.
From the samples that were taken, the following diagrams show the likelihood
of each individual bit being set for each of the different entropy sources.

Overall, there are a number of predictable bits in things like the high 32-bits of
both the system time and the performance counter, the process identifier, the
thread identifier, and the tick count. The sources that are largely unpredictable
are the low 32-bits of the system time and the performance counter. However, if
it were possible to come up with a way to discover the boot time (or uptime) of
the system remotely, it might be possible to infer a good portion of the low 32-
bits of the system time. This would then directly impact the ability to estimate
things like the tick count and performance counters.
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Figure 4.3: Likelihood of a given bit being set in the high 32-bits of System
Time for an auto start service
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Figure 4.4: Likelihood of a given bit being set in the low 32-bits of System Time
for an auto start service
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Figure 4.5: Likelihood of a given bit being set in the high 32-bits of the Perfor-
mance Counter for an auto start service
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Figure 4.6: Likelihood of a given bit being set in the low 32-bits of the Perfor-
mance Counter for an auto start service

20



100

20

80

70

60

50

40

30

20

Likelihood of the bit being set

10

30 28 2Zp 24 22 20 18 16 14 1z 10 B B 4 2 a

Bit position: Process ldentifier

Figure 4.7: Likelihood of a given bit being set in the Process Identifier for an
auto start service
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Figure 4.8: Likelihood of a given bit being set in the Thread Identifier for an
auto start service
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Chapter 5

Experimental Results

This chapter describes some of the initial results that were collected using a
utility developed by the author named gencookie.exe. This utility attempts
to calculate the value of the cookie that was generated for the executable im-
age associated with an arbitrary process, such as 1sass.exe. While the results
of this utility were limited to attempting to calculate the cookie of a process’
executable, the techniques described in previous chapters are nonetheless appli-
cable to the cookies generated in the context of dependent DLLs. The results
described in this chapter illustrate the tool’s ability to accurately obtain specific
bits within the different components that compose the cookie, including specific
bits of the cookie itself. This helps to paint a picture of the amount of true
entropy that is reduced through the techniques described in this document.

The data set that was used to calculate the overall results included 5001 samples
which were collected from a single machine. The samples were collected through
a few simple steps. First, a program called vulnapp.exe that was compiled with
/GS was modified to have its __security_init_cookie routine save information
about the cookie that was generated and the values that contributed to its
generation. Following that, the gencookie.exe utility was launched against
the running process in an attempt to calculate vulnapp.exe’s GS cookie. A
comparison between the expected and actual value of each component was then
saved. These steps were repeated 5001 times. The author would be interested in
hearing about independent validation of the findings presented in this chapter.

The following sections describe the bit-level predictability of each of the compo-
nents that are used to generate the GS cookie, including the overall predictabil-
ity of the bits of the GS cookie itself. The diagrams describe the predictability
in terms of the percent of the time that each bit was correctly calculated by
gencookie.exe. The diagram in figure 5.1 shows with what percentage accu-
racy each individual component was successfully calculated. For example, the
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value used for the low 32-bits of the system time component was successfully de-
termined 77 percent of the time. The low 32-bits of the performance counter and
the cookie itself were never calculated exactly. The reason for this discrepancy
will be discussed in the following sections.
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Figure 5.1: Percentage of the time that all bits of individual components were
accurately calculated

5.1 System Time

The system time component was highly predictable. The high 32-bit bits of
the system time were predicted with 100 percent accuracy. The low 32-bit bits
on the other hand were predicted with only 77 percent accuracy (3878 times).
The reason for this discrepancy has to do with the thread scheduling scenario
described in subsection 4.1.1. Even still, these results indicate that it is likely
that the entire system time value can be accurately calculated.
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Figure 5.2: Percent accuracy of each bit position for the estimated high 32-bits
of the System Time
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Figure 5.3: Percent accuracy of each bit position for the estimated low 32-bits
of the System Time
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5.2 Process and Thread Identifier

The process and thread identifier were successfully calculated 100 percent of the
time using the approach outlined in section 4.1.2.
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Figure 5.4: Percent accuracy of each bit position for the estimated Process
Identifier

26



100
80
B0
70
60
50
40
30
20

Percent Accuracy

10

3 2B 26 24 22 0 18 16 14 12 10 & & 4 Z a

Bit position: Thread Identifier

Figure 5.5: Percent accuracy of each bit position for the estimated Thread
Identifier
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5.3 Tick Count

The tick count was accurately calculated 67 percent of the time (3396 times).
The reason for this lower rate of success is due in large part to the fact that
the tick count is calculated in relation to the estimated system time value.
As such, if an incorrect system time value is determined, the tick count itself
will be directly influenced. This should account for at least 23 percent of the
inaccuracies judging from how often the system time was inaccurately estimated.
The remaining 10 percent of the inaccuracies is as of yet undetermined, but it
is most likely related to the an improper interpretation of the constant scaling
factor that is applied to the tick count. In any case, it is expected that only a
few bits are actually affected in the remaining 10 percent of cases.
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Figure 5.6: Percent accuracy of each bit position for the estimated Tick Count
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5.4 Performance Counter

The high 32-bits of the performance counter were successfully estimated 100
percent of the time. The low 32-bits, on the other hand, show the greatest
degree of volatility when compared to the other components. The high order
15 bits of the low 32-bits show a bias in terms of accuracy that is not a 50/50
split. The remaining 17 bits were all guessed correctly roughly 50 percent of
the time. This makes the low 17 bits the only truly effective source of entropy
in the performance counter since there is no bias shown in relation to the es-
timated versus actual values. Indeed, this is not enough to prove that there
aren’t observable patterns in the low 17 bits, but it is enough to show that the
gencookie.exe utility was not effective in estimating them. Figures 5.8 and
5.9 show the percent accuracy for the high and low order 32-bits.

This discrepancy actually requires a more detailed explanation. In reality, the
estimates made by the gencookie.exe utility are actually not as far off as
one might think based on the percent accuracy of each bit as described in the
diagrams. Instead, the estimates are, on average, off by only 105,000. This
average difference is what leads to the lower 17 bits being so volatile. One
thing that’s interesting about the difference between the estimated and actual
performance counter is that there appears to be a time oriented trend related to
how far off the estimates are. The scatter plot diagram in figure 5.7 illustrates
the absolute difference between the estimated and actual low 32-bits of the
performance counter as taken from the 5001 samples. Due to the way that the
samples were taken, it’s safe to assume that each sample is roughly equivalent
to one second worth of time passing (due to a sleep between sample collection).
Further study of this apparent relationship may yield better results in terms of
estimating the lower 17 bits of the low 32 bits of the performance counter. This
is left for future research.
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Figure 5.8: Percent accuracy of each bit position for the estimated high 32-bits
of the Performance Counter
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5.5 Cookie

The cookie itself was never actually guessed during the course of sample collec-
tion. The reason for this is tightly linked with the current inability to accurately
determine the lower 17 bits of the low 32 bits of the performance counter. Com-
paring the percent accuracy of the cookie bits with the percent accuracy of the
low 32 bits of the performance counter yields a very close match.
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Figure 5.10: Percent accuracy of each bit position for the estimated Cookie
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Chapter 6

Improvements

Based on the results described in chapter 5, the author feels that there is plenty
of room for improvement in the way that GS cookies are currently generated.
It’s clear that there is a need to ensure that there are 32 bits of true entropy
in the cookie. The following sections outline some potential solutions to the
entropy issue described in this document.

6.1 Better Entropy Sources

Perhaps the most obvious solution would be to simply improve the set of entropy
sources used to generate the cookie. In particular, the use of sources with greater
degrees of entropy, especially in the high order bits, would be of great benefit.
The challenge, however, is locating sources that are easy to interact with and
require very little overhead. For example, it’s not really feasible to have the GS
cookie generator rely on the crypto API due to the simple fact that this would
introduce a dependency on the crypto API in any application that was compiled
with /GS. As this document has hopefully shown, it’s also a requirement that
any additional entropy sources be challenging to estimate externally at a future
point in time.

Even though this is a viable solution, the author is not presently aware of
any additional entropy sources that would meet all three requirements. For
this reason, the author feels that this approach alone is insufficient to solve
the problem. If entropy sources are found which meet these requirements, the
author would love to hear about them.
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6.2 Seeding High Order Bits

A more immediate solution to the problem at hand would involve simply ensur-
ing that the predictable high order bits are seeded with less predictable values.
However, additional entropy sources would be required in order to implement
this properly. At present, the only major source of entropy found in the GS
cookie is the low order bits of the performance counter. It would not be suffi-
cient to simply shift the low order bits of the performance counter into the high
order. Doing so would add absolutely no value by itself because it would have
no effect on the amount of true entropy in the cookie.

6.3 External Cookie Generation

An alternative solution that could combine the effects of the first two solutions
would be to change the GS implementation to generate the cookie external to
the binary itself. One of the most dangerous aspects of the GS implementation
is that it is statically linked and therefore would require a recompilation of all
affected binaries in the event that a weakness is found. This fact alone should
be scary. To help address both this problem and the problem of weak entropy
sources, it makes sense to consider a more dynamic approach.

One example of a dynamic approach would be to have the GS implementation
issue a call into a kernel-mode routine that is responsible for generating GS cook-
ies. One place that this support could be added is in NtQuerySystemInformation,
though it’s likely that a better place may exist. Regardless of the specific rou-
tine, this approach would have the benefit of moving the code used to generate
the cookie out of the statically linked stub that is inserted by the compiler. If
any weakness were to be found in the kernel-mode routine that generates the
cookie, Microsoft could issue a patch that would immediately affect all applica-
tions compiled to use GS. This would solve some of the concerns relating to the
static nature of GS.

Perhaps even better, this approach would grant greater flexibility to the entropy
sources that could be used in the generation of the cookie. Since the routine
would exist in kernel-mode, it would have the benefit of being able to access
additional sources of entropy that may be challenging or clumsy to interact with
from user-mode (though the counterpoint could certainly be made as well). The
kernel-mode routine could also accumulate entropy over time and feed that back
into the cookie, whereas the statically linked implementation has no context
with which to accumulate entropy. The accumulation of state can also do more
harm than good. It would be disingenuous to not admit that this approach
could also have its own set of problems. A poorly implemented version of this
solution might make it possible for a user to eliminate all entropy by issuing a
non-trivial number of calls to the kernel-mode routine. There may be additional
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consequences that have not yet been perceived.

The impact on performance is also a big point of concern for any potential
change to the cookie generation path. At a high-level, a transition into kernel-
mode would seem concerning in terms of the amount of overhead that might
be added. However, it’s important to note that the current implementation
of GS already transitions into kernel-mode to obtain some of it’s information.
Specifically, performance counter information is obtained through the system
call NtQueryPerformanceCounter. Even more, this system call results in an in
operation on an I/O port that is used to query the current performance counter.

Another important consideration is backward compatibility. If Microsoft were
to implement this solution, it would be necessary for applications compiled with
the new support to still be able benefit from GS on older platforms that don’t
support the new kernel interface. To allow for backward compatibility, Microsoft
could implement a combination of all three solutions, whereby better entropy
sources and seeding of high order bits are used as a fallback in the event that
the kernel-mode interface is not present.

As it turns out, Microsoft does indeed have a mechanism that could allow them
to create a patch that would affect the majority of the binaries compiled with
recent versions of GS. This functionality is provided by exposing the address of
an image file’s security cookie in its the load config data directory. When the
dynamic loader (ntdll) loads an image file, it checks to see if the security cookie
address in the load config data directory is non-NULL. If it’s not NULL, the
loader proceeds to store the process-wide GS cookie in the module-specific’s GS
cookie location. In this way, the __security_init_cookie routine that’s called
by the image file’s entry point effectively becomes a no-operation because the
cookie will have already been initialized. This manner of setting the GS cookie
for image files provides Microsoft with much more flexibility. Rather than having
to update all binaries compiled with GS, Microsoft can simply update a single
binary (ntdll.dll) if improvements need to be made to the cookie generation
algorithm. The following output shows a sample of dumpbin /loadconfig on
kernel32.d11:

Microsoft (R) COFF/PE Dumper Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.
Dump of file c:\windows\system32\kernel32.d1ll
File Type: DLL

Section contains the following load config:

00000048 size
0 time date stamp

7C8836CC Security Cookie

35



Chapter 7

Future Work

There is still additional work that can be done to further refine the techniques
described in this document. This chapter outlines some of the major items that
could be followed up on.

7.1 Improving Performance Counter Estimates

One area in particular that the author feels could benefit from further research
has to do with refining the technique used to calculate the performance counter.
As was illustrated in figure 5.7, a more thorough analysis of the apparent associ-
ation between time and the lower 17 bits of the performance counter is necessary.
This analysis would directly affect the ability to recover more cookie state in-
formation, since the entropy of the lower 17 bits of the performance counter is
one of the only things standing in the way of obtaining the entire cookie.

7.2 Remote Attacks

The ability to apply the techniques described in this document in a remote
scenario would obviously increase the severity of the problem. In order to do
this, an attacker would need the ability to either infer or be able to calculate
some of the key elements that are used in the generation of a cookie. This would
rely on being able to determine things like the process creation time, the process
and thread identifier, and the system uptime. With these values, it should be
possible to predict the state of the cookie with similar degrees of accuracy. Of
course, methods of obtaining this information remotely are not obvious.

36



One point of consideration that should be made is that even if it’s not possible
to directly determine some of this information, it may be possible to infer it.
For instance, consider a scenario where a vulnerability in a service is exposed
remotely. There’s nothing to stop an attacker from causing the service to crash.
In most cases, the service will restart at some predefined point (such as 30 sec-
onds after the crash). Using this approach, an attacker could infer the creation
time of the process based on the time that the crash was generated. This isn’t
fool proof, but it should be possible to get fairly close.

Determining process and thread identifier could be tricky, especially if the sys-
tem has been up for some time. The author is not aware of a general purpose
technique that could be used to determine this information remotely. Fortu-
nately, the process and thread identifier have very little effect on high order
bits.

The system uptime is an interesting one. In the past, there have been techniques
that could be used to estimate the uptime of the system through the use of TCP
timestamps and other network protocol anomalies. At the time of this writing,
the author is not aware of how prevalent or useful these techniques are against
modern operating systems. Should they still be effective, they would represent
a particularly useful way of obtaining a system’s uptime. If an attacker can
obtain both the creation time of the process and the uptime of the system, it’s
possible to calculate the tick count and performance counter values with varying
degrees of accuracy.

The performance counter will still pose a great challenge in the remote scenario.
The reliance on the performance frequency shouldn’t be seen as an unknown
quantity. As far as the author is aware, the performance frequency on modern
processors is generally 3579545, though there may be certain power situations
that would cause it to be different.

It is also important to note that the current attack assumes that the load time
for an image that has a GS cookie is equivalent to the initial thread’s creation
time. For example, if a DLL were loaded much later in process execution, such
as through instantiating a COM object in Internet Explorer, it would not be
possible to assume that initial thread creation time is equal to the system time
that was obtained when the DLL’s GS cookie was generated. This brings about
an interesting point for the remote scenario, however. If an attacker can control
the time at which a DLL is loaded, it may be possible for them to infer the
value of system time that is used without even having to directly query it. One
example of this would be in the context of internet explorer, where the client’s
date and time functionality might be abused to obtain this information.
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Chapter 8

Conclusion

The ability to reduce the amount of effective entropy in a GS cookie can improve
an attacker’s chances of guessing the cookie. This paper has described two
techniques that may be used to calculate or infer the values of certain bits in
a GS cookie. The first approach involves a local attacker’s ability to collect
information that makes it possible to calculate, with pretty good accuracy, the
values of the entropy sources that were used at the time that a cookie was
generated. The second approach describes the potential for abusing the limited
entropy associated with boot start services.

While the results shown in this paper do not represent a complete break of
GS, they do hint toward a general weakness in the way that GS cookies are
generated. This is particularly serious given the fact that GS is a compile time
solution. If the techniques described in this document are refined, or new and
improved techniques are identified, a complete break of GS would require the
recompilation of all affected binaries. The implications of this should be obvious.
The ability to reliably predict the value of a GS cookie would effectively nullify
any benefits that GS adds. It would mean that all stack-based buffer overflows
would immediately become exploitable.

To help contribute to the improvement of GS, a few different solutions were
described that could either partially or wholly address some of the weakness
that were identified. The most interesting of these solutions involves modifying
the GS implementation to make use of a external cookie generator, such as the
kernel. Going this route would ensure that any weaknesses found in the cookie
generation algorithm could be simply addressed through a patch to the kernel.
This is much more reasonable than expecting all existing GS enabled binaries
to be recompiled.

It’s unclear whether the techniques presented in this paper will have any appre-
ciable effect on future exploits. Only time will tell.
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