Exploiting the Otherwise Non-exploitable
on Windows

Taking Another Stab at the Unhandled Exception Filter

May 2006

Skywing skape
Skywing@valhallalegends.com mmiller@hick.org

Contents

1 Foreword
2 Introduction

3 Understanding Unhandled Exception Filters
3.1 Setting the Top-Level UEF
3.2 Handling Unhandled Exceptions
3.3 Uses for Unhandled Exception Filters

4 Gaining Control of the Unhandled Exception Filter
5 Case Study: Internet Explorer

6 Mitigation Techniques
6.1 Behavioral Change to SetUnhandledExceptionFilter
6.2 Prevent Setting of non-image UEF
6.3 Prevent Execution of non-image UEF

7 Future Research

8 Conclusion

o 3 ot G

©

12

17
17
18
18

20

22

Chapter 1

Foreword

Abstract: This paper describes a technique that can be applied in certain
situations to gain arbitrary code execution through software bugs that would
not otherwise be exploitable, such as NULL pointer dereferences. To facilitate
this, an attacker gains control of the top-level unhandled exception filter for
a process in an indirect fashion. While there has been previous work|[l, 3]
illustrating the usefulness in gaining control of the top-level unhandled exception
filter, Microsoft has taken steps in XPSP2 and beyond, such as function pointer
encoding[4], to prevent attackers from being able to overwrite and control the
unhandled exception filter directly. While this security enhancement is a marked
improvement, it is still possible for an attacker to gain control of the top-level
unhandled exception filter by taking advantage of a design flaw in the way
unhandled exception filters are chained. This approach, however, is limited by
an attackers ability to control the chaining of unhandled exception filters, such
as through the loading and unloading of DLLs. This does reduce the global
impact of this approach; however, there are some interesting cases where it can
be immediately applied, such as with Internet Explorer.

Disclaimer: This document was written in the interest of education. The
authors cannot be held responsible for how the topics discussed in this document
are applied.

Thanks: The authors would like to thank H D Moore, and everyone who learns
because it’s fun.

Update: This issue has now been addressed by the patch included in MS06-
051. A complete analysis has not yet been performed to ensure that it patches
all potential vectors.

With that, on with the show...

Chapter 2

Introduction

In the security field, software bugs can be generically grouped into two cate-
gories: exploitable or non-exploitable. If a software bug is exploitable, then it
can be leveraged to the advantage of the attacker, such as to gain arbitrary code
execution. However, if a software bug is non-exploitable, then it is not possible
for the attacker to make use of it for anything other than perhaps crashing the
application. In more cases than not, software bugs will fall into the category
of being non-exploitable simply because they typically deal with common mis-
takes or invalid assumptions that are not directly related to buffer management
or loop constraints. This can be frustrating during auditing and product anal-
ysis from an assessment standpoint. With that in mind, it only makes sense
to try think of ways to turn otherwise non-exploitable issues into exploitable
issues.

In order to accomplish this feat, it’s first necessary to try to consider execution
vectors that could be redirected to code that the attacker controls after trigger-
ing a non-exploitable bug, such as a NULL pointer dereference. For starters, it
is known that the triggering of a NULL pointer dereference will cause an access
violation exception to be dispatched. When this occurs, the user-mode excep-
tion dispatcher will call the registered exception handlers for the thread that
generated the exception, allowing each the opportunity to handle the exception.
If none of the exception handlers know what to do with it, the user-mode ex-
ception dispatcher will call the top-level unhandled exception filter (UEF) via
kernel32!UnhandledExceptionFilter (if one has been set). The implementa-
tion of a function that is set as the registered top-level UEF is not specified, but
in most cases it will be designed to pass exceptions that it cannot handle onto
the top-level UEF that was registered previously, effectively creating a chain of
UEFs. This process will be explained in more detail in the next chapter.

Aside from the exception dispatching process, there are not any other control-

lable execution vectors that an attacker might be able to redirect without some
other situation-specific conditions. For that reason, the most important place to
look for a point of redirection is within the exception dispatching process itself.
This will provide a generic means of gaining execution control for any bug that
can be made to crash an application.

Since the first part of the exception dispatching process is the calling of regis-
tered exception handlers for the thread, it may make sense to see if there are any
controllable execution paths taken by the registered exception handlers at the
time that the exception is triggered. This may work in some cases, but is not
universal and requires analysis of the specific exception handler routines. With-
out having an ability to corrupt the list of exception handlers, there is likely
to be no other method of redirecting this phase of the exception dispatching
process.

If none of the registered exception handlers can be redirected, one must look to-
ward a method that can be used to redirect the unhandled exception filter. This
could be accomplished by changing the function pointer to call into controlled
code as illustrated in[1, 3]. However, Microsoft has taken steps in XPSP2, such
as encoding the function pointer that represents the top-level UEF[4]. This no
longer makes it feasible to directly overwrite the global variable that contains
the top-level UEF. With that in mind, it may also make sense to look at the
function associated with top-level UEF at the time that the exception is dis-
patched in order to see if the function itself has any meaningful way to redirect
its execution.

From this initial analysis, one is left with being required to perform an application-
dependent analysis of the registered exception handlers and UEFs that exist at
the time that the exception is dispatched. Though this may be useful in some
situations, they are likely to be few and far between. For that reason, it makes
sense to try to dive one layer deeper to learn more about the exception dispatch-
ing process. Chapter 3 will describe in more detail how unhandled exception
filters work, setting the stage for the focus of this paper. Based on that under-
standing, chapter 4 will expound upon an approach that can be used to gain
indirect control of the top-level UEF. Finally, chapter 5 will formalize the results
of this analysis in an example of a working exploit that takes advantage of one
of the many NULL pointer dereferences in Internet Explorer to gain arbitrary
code execution.

Chapter 3

Understanding Unhandled
Exception Filters

This chapter provides an introductory background into the way unhandled ex-
ception filters are registered and how the process of filtering an exception that
is not handled actually works. This information is intended to act as a base for
understanding the attack vector described in chapter 4. If the reader already
has sufficient understanding of the way unhandled exception filters operate, feel
free to skip ahead.

3.1 Setting the Top-Level UEF

In order to make it possible for applications to handle all exceptions on a process-
wide basis, the exception dispatcher exposes an interface for registering an un-
handled exception filter. The purpose of the unhandled exception filter is en-
tirely application specific. It can be used to log extra information about an
unhandled exception, perform some advanced error recovery, handle language-
specific exceptions, or any sort of other task that may need to be taken when
an exception occurs that is not handled. To specify a function that should be
used as the top-level unhandled exception filter for the process, a call must be
made to kernel32!SetUnhandledExceptionFilter which is prototyped as[6]:

LPTOP_LEVEL_EXCEPTION_FILTER SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter
)

When called, this function will take the function pointer passed in as the

lpTopLevelExceptionFilter argument and encode it using kernel32!Rt1EncodePointer.

The result of the encoding will be stored in the global variable kernel32!BasepCurrentTopLevelFilter,
thus superseding any previously established top-level filter. The previous value

stored within this global variable is decoded using kernel32!Rt1DecodePointer

and returned to the caller. Again, the encoding and decoding of this function

pointer is intended to prevent attackers from being able to use an arbitrary

memory overwrite to redirect it as has been done pre-XPSP2.

There are two reasons that kernel32!SetUnhandledExceptionFilter returns
a pointer to the original top-level UEF. First, it makes it possible to restore the
original top-level UEF at some point in the future. Second, it makes it possible
to create an implicit “chain” of UEFs. In this design, each UEF can make a
call down to the previously registered top-level UEF by doing something like
the pseudo code below:

. app specific handling ...

if (!IsBadCodePtr(PreviousTopLevelUEF))
return PreviousTopLevelUEF (ExceptionInfo);
else
return EXCEPTION_CONTINUE_SEARCH;

When a block of code that has registered a top-level UEF wishes to deregister
itself, it does so by setting the top-level UEF to the value that was returned
from its call to kernel32!SetUnhandledExceptionFilter. The reason it does
it this way is because there is no true list of unhandled exception filters that is
maintained. This method of deregistering has one very important property that
will serve as the crux of this document. Since deregistration happens in this
fashion, the register and deregister operations associated with a top-level UEF
must occur in symmetric order. An example of this is illustrated in figure 3.1,
where top-level UEFs Fx and Gz are registered and deregistered in symmetric
order.

In the diagram in figure 3.1, the top-level UEF Fx is registered, returning Nz
as the previous top-level UEF. Following that, Gz is registered, returning Fz as
the previous value. After some period of time, Gz is deregistered by setting Fz
as the top-level UEF, thus returning the top-level UEF to the value it contained
before Gz was registered. Finally, Fx deregisters by setting Nz as the top-level
UEF.

(Register Fx
L SatUnhandled Excaption FiltenFx) == MNx

~

(Register Gx

L SetUnhandledExceptionFilter(Gx) = Fx

Symmetric Fx Symmetric Gx

(Deragistar Gx

L SetUnhandledExceptionFilterFx) == Gx

/

(Deregister Fx

k SetUnhandled ExcaptionFilterMNx) == Fx

Figure 3.1: Symmetric register and deregister of UEFs

3.2 Handling Unhandled Exceptions

When an exception goes through the initial phase of the exception dispatching
process and is not handled by any of the registered exception handlers for the
thread that the exception occurred in, the exception dispatcher must take one
final stab at getting it handled before forcing the application to terminate. One
of the options the exception dispatcher has at this point is to pass the exception
to a debugger, assuming one is attached. Otherwise, it has no choice but to try to
handle the exception internally and abort the application if that fails. To allow
this to happen, applications can make a call to the unhandled exception filter
associated with the process as described in [5]. In the general case, calling the
unhandled exception filter will result in kernel32!UnhandledExceptionFilter
being called with information about the exception being dispatched.

The job of kernel32!UnhandledExceptionFilter is two fold. First, if a de-
bugger is not present, it must make a call to the top-level UEF registered with
the process. The top-level UEF can then attempt to handle the exception,
possibly recovering and allowing execution to continue, such as by returning

EXCEPTION_CONTINUE_EXECUTION. Failing that, it can either forcefully terminate

the process, typically by returning EXCEPTION_EXECUTE _HANDLER or allow the
normal error reporting dialog to be displayed by returning EXCEPTION_CONTINUE_SEARCH.
If a debugger is present, the unhandled exception filter will attempt to pass the
exception on to the debugger in order to give it a chance to handle the excep-

tion. When this occurs, the top-level UEF is not called. This is important to
remember as the paper goes on, as it can be a source of trouble if one forgets

this fact.

When operating with no debugger present, kernel32!UnhandledExceptionFilter
will attempt to decode the function pointer associated with the top-level UEF
by calling kernel32!Rt1DecodePointer on the global variable that contains the
top-level UEF, kernel32!kernel32!BasepCurrentTopLevelFilter, as shown
below:

7c862ccl ££35ac33887c push dword ptr [kernel32!BasepCurrentTopLevelFilter]
7c862cc7 eB8eld6faff call kernel32!RtlDecodePointer (7c8103ad)

If the value returned from kernel32!RtlDecodePointer is not NULL, then a
call is made to the now-decoded top-level UEF function, passing the exception
information on:

7c862ccc 3bc7 cmp eax,edi

7c862cce 7415 jz kernel32!UnhandledExceptionFilter+0x15b (7c862ceb)
7c862cd0 53 push ebx

7c862cdl ££d0 call eax

The return value of the filter will control whether or not the application contin-
ues execution, terminates, or reports an error and terminates.

3.3 Uses for Unhandled Exception Filters

In most cases, unhandled exception filters are used for language-specific ex-
ception handling. This usage is all done transparently to programmers of the
language. For instance, C++ code will typically register an unhandled ex-
ception filter through CxxSetUnhandledExceptionFilter during CRT initial-
ization as called from the entry point associated with the program or shared
library. Likewise, C++ will typically deregister the unhandled exception fil-
ter that it registers by calling CxxRestoreUnhandledExceptionFilter during
program termination or shared library unloading.

Other uses include programs that wish to do advanced error reporting or in-
formation collection prior to allowing an application to terminate due to an
unhandled exception.

Chapter 4

Gaining Control of the
Unhandled Exception Filter

At this point, the only feasible vector for gaining control of the top-level UEF is
to cause calls to be made to kernel32!SetUnhandledExceptionFilter. This is
primarily due to the fact that the global variable has the current function pointer
encoded. One could consider attempting to cause code to be redirected directly
to kernel32!SetUnhandledExceptionFilter, but doing so would require some
kind of otherwise-exploitable vulnerability in an application, thus making it not
useful in the context of this document.

Given these restrictions, it makes sense to think a little bit more about the
process involved in registering and deregistering UEFs. Since the chain of regis-
tered UEF's is implicit, it may be possible to cause that chain to become corrupt
or invalid in some way that might be useful. One of the requirements that is
known about the registration process for top-level UEFs is that the register
and deregister operations must be symmetric. What happens if they aren’t,
though? Consider the diagram in figure 4.1, where Fz and Gz are registered
and deregistered, but in asymmetric order.

As shown in the diagram in figure 4.1, Fz and Gz are registered first. Following
that, Fx is deregistered prior to deregistering Gz, thus making the operation
asymmetrical. As a result of Fz deregistering first, the top-level UEF is set to
Nz, even though Gz should technically still be a part of the chain. Finally, Gz
deregisters, setting the top-level UEF to Fx even though Fz had been previously
deregistered. This is obviously incorrect behavior, but the code associated with
Gz has no idea that Fx has been deregistered due to the implicit chain that is
created.

If asymmetric registration of UEFs can be made to occur, it might be possible

(Feqister Fx
L SetUnhandledExceptionFiltar(Fx) == Nx

r Registar Gx
Asymmetric Fx L SetUnhandledExceptionFilter(Gx) => Fx
Asymmetric Gx (Deregister Fx

L SetUnhandledExceptionFilienMNx) == Gx

(Deregister Gx

L SetUnhandledExceptionFilter(Fx) => Nx

Figure 4.1: Asymmetric register and deregister of UEFs

for an attacker to gain control of the top-level UEF. Consider for a moment that
the register and deregister operations in the diagram in figure 4.1 occur during
DLL load and unload, respectively. If that is the case, then after deregistration
occurs, the DLLs associated with the UEFs will be unloaded. This will leave the
top-level UEF set to Fr which now points to an invalid region of memory. If an
exception occurs after this point and is not handled by a registered exception
handler, the unhandled exception filter will be called. If a debugger is not
attached, the top-level UEF Fz will be called. Since Fz points to memory
that is no longer associated with the DLL that contained Fx, the process will
terminate — or worse.

From a security prospective, the act of leaving a dangling function pointer that
now points to unallocated memory can be a dream come true. If a scenario such
as this occurs, an attacker can attempt to consume enough memory that will
allow them to store arbitrary code at the location that the function originally
resided. In the event that the function is called, the attacker’s arbitrary code
will be executed rather than the code that was was originally at that location.
In the case of the top-level UEF, the only thing that an attacker would need to
do in order to cause the function pointer to be called is to generate an unhandled
exception, such as a NULL pointer dereference.

10

All of these details combine to provide a feasible vector for executing arbitrary
code. First, it’s necessary to be able to cause at least two DLLs that set UEF's to
be deregistered asymmetrically, thus leaving the top-level UEF pointing to in-
valid memory. Second, it’s necessary to consume enough memory that attacker
controlled code can reside at the location that one of the UEF functions origi-
nally resided. Finally, an exception must be generated that causes the top-level
UEF to be called, thus executing the attacker’s arbitrary code.

The big question, though, is how feasible is it to really be able to control the
registering and deregistering of UEFs? To answer that, chapter 5 provides a case
study on one such application where it’s all too possible: Internet Explorer.

11

Chapter 5

Case Study: Internet
Explorer

Unfortunately for Internet Explorer, it’s time for it to once again dawn the
all-too-exploitable hat and tell us about how it can be used as a medium to
gain arbitrary code execution with all otherwise non-exploitable bugs. In this
approach, Internet Explorer is used as a medium for causing DLLs that register
and deregister top-level UEFs to be loaded and unloaded. One way in which
an attacker can accomplish this is by using Internet Explorer’s facilities for
instantiating COM objects from within the browser. This can be accomplished
either by using the new ActiveXObject construct in JavaScript or by using the
HTML 0BJECT tag.

In either case, when a COM object is being instantiated, the DLL associated
with that COM object will be loaded into memory if the object instance is cre-
ated using the INPROC_SERVER. When this happens, the COM object’s D11Main
will be called. If the DLL has an unhandled exception filter, it may be registered
during CRT initialization as called from the DLL’s entry point. This takes care
of the registering of UEFs, so long as COM objects that are associated with
DLLs that set UEFs can be found.

To control the deregister phase, it is necessary to somehow cause the DLLs
associated with the previously instantiated COM objects to be unloaded. One
approach that can be taken to do this is attempt to leverage the locations that
0le32!CoFreeUnusedLibrariesEx is called from. Ome particular place that
it’s called from is during the closure of an Internet Explorer window that once
hosted the COM object. When this function is called, all currently loaded COM
DLLs will have their D11CanUnloadNow routines called. If the routine returns
S_0K, such as when there are no outstanding references to COM objects hosted
by the DLL, then the DLL can be unloaded.

12

Now that techniques for controlling the loading and unloading of DLLs that set
UEFs has been identified, it’s necessary to come up with an implementation
that will allow the deregister phase to occur asymmetrically. One method that
can be used to accomplish this illustrated by the registration phase in figure 5.1
and the deregistration phase in figure 5.2.

Open Window #1

.____-'

(Instantiate COMObjecti J

oy

(Load DLL1 j

[Se‘ll,.lnhandladEmeptiﬁnFlI[ar{Fx]. == ij

¥*

Open Window #2

(Instantiata CDMDbjamﬂj
—
[Load DLL2)

e

[SaﬂJnhandladEmeptinnFiltar{Gx] == F:D

Figure 5.1: Registering Top-Level UEFs through COM Objects

In the example described in figure 5.1, two windows are opened, each of which
registers a UEF by way of a DLL that implements a specific COM object. In
this example, the first window instantiates COMObjectl which is implemented
by DLL #1. When DLL #1 is loaded, it registers a top-level UEF Fz. Once that
completes, the second window is opened which instantiates COMObject2, thus
causing DLL #2 to be loaded which also registers a top-level UEF, Gz. Once
these operations complete, DLL #1 and DLL #2 are still resident in memory
and the top-level UEF points to Gz.

To gain control of the top-level UEF, Fz and Gz will need to be deregistered
asymmetrically. To accomplish this, DLL #1 must be unloaded before DLL #2.
This can be done by closing the window that hosts COMObjectl, thus causing
0le32!CoFreeUnusedLibrariesEx to be called which results in DLL #1 being
unloaded. Following that, the window that hosts COMObject2 should be closed,

13

once again causing unused libraries to be freed and DLL #2 unloaded. The
diagram in figure 5.2 illustrates this process.

Close Window #1

o

(CoFreaUnusadlerarlesExj

£

(Unload DLLA J

—
E’Seﬂ,.lnhandladEmepﬂnnﬁltar{Nﬂ == Gx)

L3

Closa Window #2

GoFr&eUnusedLibrariesEa
—
[Unlaad DLL2)

(SB‘MnlundladEmpﬂunHIt&qFx} = Nx)

Figure 5.2: Deregistering Top-Level UEFs through COM Objects Asymmetri-
cally

After the process in figure 5.2 completes, Fx will be the top-level UEF for the
process, even though the DLL that hosts it, DLL #1, has been unloaded. If an
exception occurs at this point in time, the unhandled exception filter will make
a call to a function that now points to an invalid region of memory.

At this point, an attacker now has reasonable control over the top-level UEF
but is still in need of some approach that can used to place his or her code at the
location that Fx resided at. To accomplish this, attackers can make use of the
heap-spraying|[8, 7] technique that has been commonly applied to browser-based
vulnerabilities. The purpose of the heap-spraying technique is to consume an
arbitrary amount of memory that results in the contents of the heap growing
toward a specific address region. The contents, or spray data, is arbitrary code
that will result in an attacker’s direct or indirect control of execution flow once
the vulnerability is triggered. For the purpose of this paper, the trigger is the
generation of an arbitrary exception.

As stated above, the heap-spraying technique can be used to place code at

14

the location that Fz resided. However, this is limited by whether or not that
location is close enough to the heap to be a practical target for heap-spraying.
In particular, if the heap is growing from 0x00480000 and the DLL that contains
Fx was loaded at 0x7c800000, it would be a requirement that roughly 1.988
GB of data be placed in the heap. That is, of course, assuming that the target
machine has enough memory to contain this allocation (across RAM and swap).
Not to mention the fact that spraying that much data could take an inordinate
amount of time depending on the speed of the machine. For these reasons, it
is typically necessary for the DLL that contains Fz in this example scenario to
be mapped at an address that is as close as possible to a region that the heap
is growing from.

During the research of this attack vector, it was found that all of the COM
DLLs provided by Microsoft on XPSP2 are compiled to load at higher ad-
dresses which make them challenging to reach with heap-spraying, but it’s not
impossible. Many 3rd party COM DLLs, however, are compiled with a default
load address of 0x00400000, thus making them perfect candidates for this tech-
nique. Another thing to keep in mind is that the preferred load address of a
DLL is just that: preferred. If two DLLs have the same preferred load address,
or their mappings would overlap, then obviously one would be relocated to a
new location, typically at a lower address close to the heap, when it is loaded.
By keeping this fact in mind, it may be possible to load DLLs that overlap,
forcing relocation of a DLL that sets a UEF that would otherwise be loaded at
a higher address.

It is also very important to note that a COM object does not have to be suc-
cessfully instantiated for the DLL associated with it to be loaded into memory.
This is because in order for Internet Explorer to determine whether or not the
COM class can be created and is compatible with one that may be used from
Internet Explorer, it must load and query various COM interfaces associated
with the COM class. This fact is very useful because it means that any DLL
that hosts a COM object can be used — not just ones that host COM objects
that can be successfully instantiated from Internet Explorer.

The culmination of all of these facts is a functional proof of concept exploit for
Windows XP SP2 and the latest version of Internet Explorer with all patches
applied prior to MS06-051. Its one requirement is that the target have Adobe
Acrobat installed. Alternatively, other 3rd party (or even MS provided DLLs)
can be used so long as they can be feasibly reached with heap-spraying tech-
niques. Technically speaking, this proof of concept exploits a NULL pointer
dereference to gain arbitrary code execution. It has been implemented as an
exploit module for the 3.0 version of the Metasploit Framework.

The following example shows this proof of concept in action:

msf exploit(windows/browser/ie_unexpfilt_poc) > exploit
[*] Started reverse handler

15

[*]
[*]
[*]
msf
[*]
[*]

msf

[*]

Using URL: http://x.x.x.x:8080/FnhWjeVOnUSN1bAGAEhjcjzQWh17myEK1Exg0
Server started.

Exploit running as background job.
exploit(windows/browser/ie_unexpfilt_poc) >

Sending stage (474 bytes)

Command shell session 1 opened (x.x.x.x:4444 -> y.y.y.y:1059)

exploit(windows/browser/ie_unexpfilt_poc) > session -i 1
Starting interaction with 1...

Microsoft Windows XP [Version 5.1.2600]

©

Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\mmiller\Desktop>

16

Chapter 6

Mitigation Techniques

In the interest of not presenting a problem without a solution, the authors have
devised a few different approaches that might be taken by Microsoft to solve
this issue. Prior to identifying the solution, it is important to summarize the
root of the problem. In this case, the authors feel that the problem at hand is
rooted around a design flaw with the way the unhandled exception filter “chain”
is maintained. In particular, the “chain” management is an implicit thing which
hinges on the symmetric registering and deregistering of unhandled exception
filters. In order to solve this design problem, some mechanism must be put
in place that will eliminate the symmetrical requirement. Alternatively, the
symmetrical requirement could be retained so long as something ensured that
operations never occurred out of order. The authors feel that this latter ap-
proach is more complicated and potentially not feasible. The following sections
will describe a few different approaches that might be used or considered to
solve this issue.

Aside from architecting a more robust implementation, this attack vector may
also be mitigated through conventional exploitation counter-measures, such as
NX and ASLR.

6.1 Behavioral Change to SetUnhandledExcep-
tionFilter

One way in which Microsoft could solve this issue would be to change the be-
havior of kernel32!SetUnhandledExceptionFilter in a manner that allows it
to support true registration and deregistration operations rather than implicit
ones. This can be accomplished by making it possible for the function to deter-
mine whether a register operation is occurring or whether a deregister operation

17

is occurring.

Under this model, when a registration operation occurs, kernel32!SetUnhandledExceptionFilter
can return a dynamically generated context that merely calls the routine that is

previous to the one that was registered. The fact that the context is dynamically

generated makes it possible for the function to distinguish between registrations

and deregistrations. When the function is called with a dynamically generated

context, it can assume that a deregistration operation os occurring. Otherwise,

it must assume that a registration operation is occurring.

To ensure that the underlying list of registered UEFs is not corrupted,
kernel32!SetUnhandledExceptionFilter can be modified to ensure that when
a deregistration operation occurs, any dynamically generated contexts that ref-
erence the routine being deregistered can be updated to call to the next-previous
routine, if any, or simply return if there is no longer a previous routine.

6.2 Prevent Setting of non-image UEF

One approach that could be used to solve this issue for the general case is the
modification of kernel32!SetUnhandledExceptionFilter to ensure that the
function pointer being passed in is associated with an image region. By adding
this check at the time this function is called, the attack vector described in this
document can be mitigated. However, doing it in this manner may have negative
implications for backward compatibility. For instance, there are likely to be
cases where this scenario happens completely legitimately without malicious
intent. If a check like this were to be added, a once-working application would
begin to fail due to the added security checks. This is not an unlikely scenario.
Just because an unhandled exception filter is is invalid doesn’t mean that it
will eventually cause the application to crash because it may, in fact, never be
executed.

6.3 Prevent Execution of non-image UEF

Like preventing the setting of a non-image UEF, it may also be possible to to
modify kernel32!UnhandledExceptionFilter to prevent execution of the top-
level UEF if it points to a non-image region. While this seems like it would be a
useful check and should solve the issue, the fact is that it does not. Consider the
scenario where a top-level UEF is set to an invalid address due to asymmetric
deregistration. Following that, the top-level UEF is set to a new value which is
the location of a valid function. After this point, if an unhandled exception is
dispatched, kernel32!UnhandledExceptionFilter will see that the top-level
UEF points to a valid image region and as such will call it. However, the top-

18

level UEF may be implemented in such a way that it will pass exceptions that it
cannot handle onto the previously registered top-level UEF. When this occurs,
the invalid UEF is called which may point to arbitrary code at the time that
it’s executed. The fact that kernel32!UnhandledExceptionFilter can filter
non-image regions does not solve the fact that uncontrolled UEFs may pass
exceptions on up the chain.

19

Chapter 7

Future Research

With the technique identified for being able to control the top-level UEF by
taking advantage of asymmetric deregistration, future research can begin to
identify better ways in which to accomplish this. For instance, rather than
relying on child windows in Internet Explorer, there may be another vector
through which ole32!CoFreeUnusuedLibrariesEx can be called to cause the
asymmetric deregistration to occur!'. There may also be better and more refined
techniques that can be used to more accurately spray the heap in order to place
arbitrary code at the location that a defunct top-level UEF resided at.

Aside from improving the technique itself, it is also prudent to consider other
software applications this could be affected by this. In most cases, this technique
will not be feasible due to an attacker’s inability to control the loading and
unloading of DLLs. However, should a mechanism for accomplishing this be
exposed, it may indeed be possible to take advantage of this.

One such target software application that the authors find most intriguing would
be IIS. If it were possible for a remote attacker to cause DLLs that use UEFs
to be loaded and unloaded in a particular order, such as by accessing websites
that load COM objects, then it may be possible for an attacker to leverage this
vector on a remote webserver. At the time of this writing, the only approach
that the authors are aware of that could permit this are remote debugging
features present in ASP.NET that allow for the instantiation of COM objects
that are placed in a specific allow list. This isn’t a very common configuration,
and is also limited by which COM objects can be instantiated, thus making
it not particularly feasible. However, it is thought that other, more feasible
techniques may exist to accomplish this.

Aside from IIS, the authors are also of the opinion that this attack vector could

1By default, 0le32!CoFreeUnusedLibrariesEx is called every ten minutes, but this fact is
not particulary useful in terms of general exploitation

20

be applied to many of the Microsoft Office applications, such as Excel and Word.
These suites are thought to be vulnerable due to the fact that they permit the
instantiation and embedding of arbitrary COM objects in the document files. If
it were possible to come up with a way to control the loading and unloading of
DLLs through these instantiations, it may be possible to take advantage of the
flaw outlined in this paper. One particular way in which this may be possible
is through the use of macros, but this has a lesser severity because it would
require some form of user interaction to permit the execution of macros.

Another interesting application that may be susceptible to this attack is Mi-
crosoft SQL server. Due to the fact that SQL server has features that permit
the loading and unloading of DLLs[2], it may be possible to leverage a SQL
injection attack in a way that makes it possible to gain control of the top-level
UEF by causing certain DLLs to be loaded and unloaded?. Once that occurs, a
large query with predictable results could be used as a mechanism to spray the
heap. This type of attack could even be accomplished through something as in-
nocuous as a website that is merely backed against the SQL server. Remember,
attack vectors aren’t always direct.

2However, given the ability to load DLLs, there are likely to be other techniques that can
be used to gain code execution as well

21

Chapter 8

Conclusion

The title of this paper implies that an attacker has the ability to leverage code
execution of bugs that would otherwise not be useful, such as NULL pointer
dereferences. To that point, this paper has illustrated a technique that can be
used to gain control of the top-level unhandled exception filter for an application
by making the registration and deregistration process asymmetrical. Once the
top-level UEF has been made to point to invalid memory, an attacker can use
techniques like heap-spraying to attempt to place attacker controlled code at
the location that the now-defunct top-level UEF resided at. Assuming this can
be accomplished, an attacker simply needs to be able to trigger an unhandled
exception to cause the execution of arbitrary code.

The crux of this attack vector is in leveraging a design flaw in the assumptions
made by the way the unhandled exception filter “chain” is maintained. In partic-
ular, the design assumes that calls made to register, and subsequently deregister,
an unhandled exception filter through kernel32!SetUnhandledExceptionFilter
will be done symmetrically. However, this cannot always be controlled, as DLLs
that register unhandled exception filters are not always guaranteed to be loaded
and unloaded in a symmetric fashion. If an attacker is capable of controlling
the order in which DLLs are loaded and unloaded, then they may be capable of
gaining arbitrary code execution through this technique, such as was illustrated
in the Internet Explorer case study in chapter 5.

While not feasible in most cases, this technique has been proven to work in at
least one critical application: Internet Explorer. Going forward, other applica-
tions, such as IIS, may also be found to be susceptible to this attack vector. All
it will take is a little creativity and the right set of conditions.

22

Bibliography

1]

Conover, Matt and Oded Horovitz. Reliable Windows Heap FExploits.
http://cansecwest.com/csw04/csw04-0ded+Connover. ppt; accessed
May 6, 2006.

Kazienko, Przemyslaw and Piotr Dorosz. Hacking an SQL Server.
http://www.windowsecurity.com/articles/Hacking_an_SQL_Server.
html; accessed May 7, 2006.

Litchfield, David. Windows Heap Overflows.
http://www.blackhat.com/presentations/win-usa-04/
bh-win-04-1litchfield/bh-win-04-1litchfield.ppt; accessed May
6, 2006.

Howard, Michael. Protecting against Pointer Subterfuge (Kinda!).
http://blogs.msdn.com/michael_howard/archive/2006/01/30/
520200 . aspx; accessed May 6, 2006.

Microsoft Corporation. UnhandledExceptionFilter.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/debug/base/unhandledexceptionfilter.asp; accessed May 6,
2006.

Microsoft Corporation. SetUnhandled ExceptionFilter.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/debug/base/setunhandledexceptionfilter.asp; accessed May
6, 2006.

Murphy, Matthew. Windows Media Player Plug-In Embed Overflow;
http://www.milwOrm. com/exploits/1505; accessed May 7, 2006.

SkyLined. InternetExploiter.
http://www.edup.tudelft.nl/~bjwever/exploits/
InternetExploiter2.zip; accessed May 7, 2006.

23

http://cansecwest.com/csw04/csw04-Oded+Connover.ppt
http://www.windowsecurity.com/articles/Hacking_an_SQL_Server.html
http://www.windowsecurity.com/articles/Hacking_an_SQL_Server.html
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-04-litchfield.ppt
http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/unhandledexceptionfilter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/unhandledexceptionfilter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/setunhandledexceptionfilter.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/setunhandledexceptionfilter.asp
http://www.milw0rm.com/exploits/1505
http://www.edup.tudelft.nl/~bjwever/exploits/InternetExploiter2.zip
http://www.edup.tudelft.nl/~bjwever/exploits/InternetExploiter2.zip

	Foreword
	Introduction
	Understanding Unhandled Exception Filters
	Setting the Top-Level UEF
	Handling Unhandled Exceptions
	Uses for Unhandled Exception Filters

	Gaining Control of the Unhandled Exception Filter
	Case Study: Internet Explorer
	Mitigation Techniques
	Behavioral Change to SetUnhandledExceptionFilter
	Prevent Setting of non-image UEF
	Prevent Execution of non-image UEF

	Future Research
	Conclusion

