Loop Detection

Peter Silberman

peter.silberman@gmail.com

Contents

1 Foreword
2 Introduction

3 Algorithms Used to Detect Loops
3.1 Natural Loop Detection
3.2 Problems with Natural Loop Detection

4 A Different Approach to Loop Detection
4.1 Problems with new approach

5 Loop Detection Using IDA Plug-ins
51 Plug-in Usage e
5.2 KnownlIssues
5.3 Case Study: Zone Alarm

6 Conclusion

Chapter 1

Foreword

Abstract: During the course of this paper the reader will gain new knowledge
about previous and new research on the subject of loop detection. The topic of
loop detection will be applied to the field of binary analysis and a case study
will given to illustrate its uses. All of the implementations provided in this
document have been written in C/C++ using Interactive Disassembler (IDA)
plug-ins.

Thanks: The author would like to thank Pedram Amini, thief, Halvar Flake,
skape, trew, Johnny Cache and everyone else at nologin who help with ideas,
and kept those creative juices flowing.

Chapter 2

Introduction

The goal of this paper is to educate the reader both about why loop detection
is important and how it can be used. When a security researcher thinks of inse-
cure coding practices, things like calls to strcpy and sprintf are some of the
first things to come to mind. These function calls are considered low hanging
fruit. Some security researchers think of integer overflows or off-by-one copy
errors as types of vulnerabilities. However, not many people consider, or think
to consider, the mis-usage of loops as a security problem. With that said, loops
have been around since the beginning of time (e.g. first coding languages). The
need for a language to iterate over data to analyze each object or character has
always been there. Still, not everyone thinks to look at a loop for security prob-
lems. What if a loop doesn’t terminate correctly? Depending on the operation
the loop is performing, it’s possible that it could corrupt surrounding memory
regions if not properly managed. If the loop frees memory that no longer exists
or is not memory, a double-free bug could’ve been found. These are all things
that could, and do, happen in a loop.

As the low hanging fruit is eliminated in software by security researchers and
companies doing decent to moderate QA testing, the security researchers have
to look elsewhere to find vulnerabilities in software. One area that has only been
touched on briefly in the public relm, is how loops operate when translated to
binaries'. The reader may ask: why would one want to look at loops? Well, a
lot of companies implement their own custom string routines, like strcpy and
strcat, which tend to be just as dangerous as the standard string routines.
These functions tend to go un-analyzed because there is no quick way to say
that they are copying a buffer. Due to this reason, loop detection can help the
security research identify areas of interest. During the course of this article the
reader will learn of the different ways to detect loops using graph analysis, how

1BugScan is an example of a company that has implemented ”buffer iteration” detection
but hasn’t talked publically about it. http://www.logiclibrary.com

http://www.logiclibrary.com

to implement loop detection, see a new loop detection IDA plug-in, and a case
study that will tie it all together.

Chapter 3

Algorithms Used to Detect
Loops

A lot of research has been done on the subject of loop detection. The research,
however, was not done for the purpose of finding and exploiting vulnerabilities
that exist inside of loops. Most research has been done with an interest in
recognizing and optimizing loops®.

Research on the optimization of loops has led scientists to classify various types
of loops. There are two distinct categories to which any loop will belong. Either
the loop will be an irreducible loop? or a reducible loop®. Given that there are
two different distinct categories, it stands to reason that the two types of loops
are detected in different fashions. Two popular papers on loop detection are
Interval Finding Algorithm[1] and Identifying Loops Using DJ Graphs[2]. This
document will cover the most widely accepted theory on loop detection.

3.1 Natural Loop Detection

One of the most well known algorithms for loop detection is demonstrated in
the book Compilers Principles, Techniques, and Tools by Alfred V. Aho, Ravi
Sethi and Jeffrey D. Ullman. In this algorithm, the authors use a technique

LA good article about loop optimization and compiler optimization is http://www.cs.
princeton.edu/courses/archive/spring03/cs320/notes/loops.pdf

2Trreducible loops are defined as ”loops with multiple entry [points]” (http://portal.acm.
org/citation.cfm?id=236114.236115)

3Reducible loops are defined as "loops with one entry [point]” (http://portal.acm.org/
citation.cfm?id=236114.236115)

http://www.cs.princeton.edu/courses/archive/spring03/cs320/notes/loops.pdf
http://www.cs.princeton.edu/courses/archive/spring03/cs320/notes/loops.pdf
http://portal.acm.org/citation.cfm?id=236114.236115
http://portal.acm.org/citation.cfm?id=236114.236115
http://portal.acm.org/citation.cfm?id=236114.236115
http://portal.acm.org/citation.cfm?id=236114.236115

that consists of two components to find natural loops®.

The first component of natural loop detection is to build a dominator tree out
of the control flow graph (CFG). A dominator can be found when all paths to a
given node have to go through another node. A control flow graph is essentially
a map of code execution with directional information. The algorithm in the
book calls for the finding of all the dominators in a CFG. Let’s look at the
actual algorithm.

Starting from the entry node, the algorithm needs to check if there is a path
to the slave from the entry node. This path has to avoid the master node.
If it is possible to get to the slave node without touching the master node, it
can be determined that the master node does not dominate the slave node.
If it is not possible to get to the slave node, it is determined that the mas-
ter node does dominate the slave. To implement this routine the user would
call the is_path to(ea_t from, ea_t to, eat avoid) function included in
loop_detection.cpp. This function will essentially check to see if there is a
path from the parameter from that can get to the parameter to, and will avoid
the node specified in avoid. Figure 3.1 illustrates this algorithm.

C »)
Ct)
/ N\
C)—Co

Figure 3.1: An example of a reducible loop

As the reader can see from Figure 1, there is a loop in this CFG. Let B to C to D
be the path of nodes that create a loop, it will be represented as B->C->D. There

4A natural loop "Has a single entry point. The header dominates all nodes in
the loop.” (http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15745-s03/public/
lectures/L7_handouts.pdf all loops are not natural loops

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15745-s03/public/lectures/L7_handouts.pdf
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15745-s03/public/lectures/L7_handouts.pdf

is also another loop from nodes B->D. Using the algorithm described above it is
possible to verify which of these nodes is involved in the natural loop. The first
question to ask is if the flow of the program can get from A to D while avoiding
B. As the reader can see, it is impossible in this case to get to D avoiding B.
As such, a call to the is_path_to function will tell the user that B Dominates
D. This can be represented as B Dom D, and B Dom C. This is due to the fact
that there is no way to reach C or D without going through B. One question
that might be asked is how exactly does this demonstrate a loop? The answer
is that, in fact, it doesn’t. The second component of the natural loop detection
checks to see if there is a link, or backedge, from D to B that would allow the
flow of the program to return to node B to complete the loop. In the case of
B->D there exists a backedge that does complete the loop.

3.2 Problems with Natural Loop Detection

There is a very big problem with natural loops. The problem is with the natural
loop definition which is “a single entry point whose header dominates all the
nodes in the loop”. Natural loop detection does not deal with irreducible loops,
as defined previously. This problem can be demonstrated in figure 77

Figure 3.2: An example of an irreducible loop

As the reader can see both B and D are entry points into C. Also neither D
nor B dominates C. This throws a huge wrench into the algorithm and makes
it only able to pick up loops that fall under the specification of a natural loop
or reducible loop®.

5Tt is important to note that it is next that it is next to impossible to reproduce ??F:fig2)
without using nested for loops and goto’s statements. For this reason it is rare that the reader
will see an example of this in a binary. However, it is possible therefore the author thought it

important to mention.

Chapter 4

A Different Approach to
Loop Detection

The reader has seen how to detect dominators within a CFG and how to use
that as a component to find natural loops. The previous chapter described why
natural loop detection was flawed when trying to detect irreducible loops. For
binary auditing, the tool will need to be able to pick up all loops and then
let the user deduce whether or not the loops are interesting. This chapter will
introduce the loop algorithm used in the IDA plug-in to detect loops.

To come up with an algorithm that was robust enough to detect both loops in
the irreducible and reducible loop categories, the author decided to modify the
previous definition of a natural loop. The new definition reads ”a loop can have
multiple entry points and at least one link that creates a cycle.” This definition
avoids the use of dominators to detect loops in the CFG.

The way this alternative algorithm works is by first making a call to the is_reference_to(ea_t
to, ea_t ref) function. The function is_reference_to will determine if there
is a reference from the ea_t specified by ref to the parameter to. This check
within the loop detection algorithm determines if there is a backedge or link
that would complete a loop. The reason this check is done first is for speed.
If there is no reference that would complete a loop then there is no reason to
call is_path_to, thus preventing unnecessary calculations. However, if there is
a link or backedge, a call to the overloaded function is_path_to(ea_-t from,
ea_t to) is used to determine if the nodes that are being examined can even
reach each other. The is_path_to function simulates all possible code execution
conditions by following all possible edges to determine if the flow of execution
could ever reach parameter to when starting at parameter from. The function
is_path to(ea_t from, ea_t to) returns one (true) if there is indeed a path
going from from to to. With both of these functions returning one, it can be

deduced that these nodes are involved in the loop.

4.1 Problems with new approach

In every algorithm there can exists small problems, that make the algorithm
far from optimal. This problem applies to the new approach presented above.
The algorithm presented above has not been optimized for performance. The
algorithm runs in a time of O(N2), which carries quite a load if there are more
than 600 or so nodes.

The reason that the algorithm is so time consuming is that instead of imple-
menting a Breadth First Search (BFS), a Depth First Search (DFS) was imple-
mented, in the is_path_to function which computes all possible paths to and
from a given node. Depth First Search is much more expensive than Breadth
First Search, and because of that the algorithm may in some rare cases suf-
fer. If the reader is interested in how to implement a more efficient algorithm
for finding the dominators, the reader should check out Compiler Design &
Implementation by Steven S. Muchnick.

It should be noted that in future of this plug-in there will be optimizations made
to the code. The optimizations will specifically deal new implementations of a
Breadth First Search instead of the Depth First Search, as well as other small
optimizations.

10

Chapter 5

Loop Detection Using IDA
Plug-ins

In every algorithm and theory there exists small problems. It is important to
understand the algorithm presented

The plug-in described in this document uses the Function Analyzer Class (func-
tion_analyzer) that was developed by Pedram Amini (http://labs.idefense.
com) as the base class. The Loop Detection (loop_detection) class uses inher-
itance to glean its attributes from Function Analyzer. The reason inheritance
is used is primarily for ease of development. Inheritance is also used so that
instead of having to re-add functions to a new version of Function Analyzer,
the user only has to replace the old file. The final reason inheritance is used is
for code conformity, which is accomplished by creating virtual functions. These
virtual functions allow the user to override methods that are implemented in the
Function Analyzer. This means that if a user understands the structure of func-
tion analyzer, they should not have a hard time understanding loop detections
structure.

5.1 Plug-in Usage

To best utilize this plug-in the user needs to understand its features and capa-
bilities. When a user runs the plug-in they will be prompted with a window
that is shown in figure 5.1. Each of the options shown in figure 5.1 are described
individually.

1. Graph Loop
This feature will visualize the loops, marking the entry of a loop with

11

http://labs.idefense.com
http://labs.idefense.com

Loop Detection x

Lo Ophions

Laoeoip Chuspeut Ohplions:
Graph Loop
Highlight Function calls

Chutput Stack Information
Highlight Code

me-nsa Chutpat

Pﬁ Commeanting

All Loops Highlight Funcsions
All Loops Code Highlight

Drataction Opticns:

Matural Loops Only
Recursrae Funcson Calls

[ok] [cence |

Figure 5.1: Loop detection plug-in options

green border, the exit of a loop with a red border and a loop node with a
yellow border.

2. Highlight Function Calls
This option allows the user to highlight the background of any function
call made within the loop. The highlighting is done within IDA View.

3. Output Stack Information
This is a feature that is only enabled with the graph loop option. When
this option is enabled the graph will contain information about the stack
of the function including the variables name, whether or not it is an argu-
ment, and the size of the variable. This option is a great feature for static
auditing.

4. Highlight Code

12

This option is very similar to Highlight Function except instead of just
highlighting function calls within loops it will highlight all the code that
is executed within the loops. This makes it easier to read the loops in IDA
View

5. Verbose Output
This feature allows the user to see how the program is working and will
give more information about what the plug-in is doing.

6. Auto Commenting
This option adds comments to loops nodes, such as where the loop begins,
where it exits, and other useful information so that the user doesn’t have
to continually look at the graph.

7. All Loops Highlighting of Functions
This feature will find every loop within the IDA database. It will then
highlight any call to any function within a loop. The highlighting is done
within the IDA View making navigation of code easier.

8. All Loops Highlighting of Code
This option will find every loop within the database. It will then highlight
all segments of code involved in a loop. The highlighting of code will allow
for easier navigation of code within the IDA View.

9. Natural Loops
This detection feature allows the user to only see natural loops. It may not
pick up all loops but is an educational implementation of the previously
discussed algorithm.

10. Recursive Function Calls
This detection option will allow the user to see where recursive function
calls are located.

5.2 Known Issues

There a couple of known issues with this plug-in. It does not deal with rep*
instructions, nor does it deal with mov** instructions that might result in copied
buffers. Future versions will deal with these instructions, but since it is open-
sourced the user can make changes as they see fit. Another issue is that of
“no-interest”. By this the author means detecting loops that aren’t of interest
or don’t pose a security risk. These loops, for example, may be just counting
loops that don’t write memory. Halvar Flake describes this topic in his talk
that was given at Blackhat Windows 2004[3]. Feel free to read his paper and
make changes accordingly. The author will also update the plug-in with these
options at a later date.

13

5.3 Case Study: Zone Alarm

For a case study the author chose Zone Alarm’s vsdatant.sys driver. This driver
does a lot of the dirty work for Zone Alarm such as packet filtering, application
monitoring, and other kernel level duties. Some may wonder why it would be
worthwhile to find loops in a driver. In Zone Alarm’s case, the user can hope to
find miscalculations in lengths where they didn’t convert a signed to unsigned
value properly and therefore may cause an overflow when looping. Anytime an
application takes data in remotely that may be type-casted at some point, there
is always a great chance for loops that overflow their bounds.

When analyzing the Zone Alarm driver the user needs to select certain options
to get a better idea of what is going on with loops. First, the user should select
verbose output and All Loops Highlighting of Functions to see if there are any
dangerous function calls within the loop. This is illustrated in figure 5.3.

P ———— -
@l = ARE L0 - = 4 mE “ES Fe
ESs mgEY TR BF F A EBhe e =
k= =BT slE ErArvENESSF 3 i RF g% BAVAM
- i

Y e R L S, gy ——"

— o O [i .oxf
e 1
wie = -

ahteal swa ibmtd |
. [whrary, ¥])
wai o g
P

:
i
:
11

]
b
£

g,

san . [l in)
Ea

wn. [wam] a!
|

wui . D

i, d eyl
ep=ar 541, wai

i W

i
£
L UL

i
i
i

i
i
T
IEEEFiFi:iII

i
i
i
i
g

After running through the loop detection phase, some interesting results are
found that are shown in figure 5.3.

Visiting the address 0x00011a21 in IDA shows the loop. To begin, the reader
will need to find the loop’s entry point, which is at:

.text:00011A1E jz short loc_11A27

At the loop’s entry point, the reader will notice:

14

Found function sub_11050 within a Toop at OxO001195F
Found function sub_113C0 within a Toop at Ox00011%69
Found function ebx within a loop at 0x00011a82
Found function ebx within a Toop at 0x00011a3d

Found function ebp within a loop at Ox00011al

Found function sub_424E0 within a Toop at Ox00012bd6
Found function sub_424E0 within a loop at Ox00012d26
Found function sub_424E0 within a loop at O0x0001372b
Found function sub_15560 within a loop at Ox0001566F

.text:00011A27 push 206B6444h ; Tag
.text:00011A2C push edi ; NumberOfBytes
.text:00011A2D push 1 ; PoolType
.text:00011A2F call ebp ;ExAllocatePoolWithTag

At this point, the reader can see that every time the loop passes through its
entry point it will allocate memory. To determine if the attacker can cause a
double free error, further investigation is needed.

.text:00011A31 mov esi, eax
.text:00011A33 test esi, esi
.text:00011A35 jz short loc_11A8F

If the memory allocation within the loop fails, the loop terminates correctly. The
next call in the loop is to ZwQuerySystemInformation which tries to acquire
the SystemProcessAndThreadsInformation.

.text:00011A46 mov eax, [esp+14h+var_4]
.text:00011A4A add edi, edi
.text:00011A4C inc eax

.text:00011A4D cmp eax, OFh
.text:00011A50 mov [esp+14h+var_4], eax
.text:00011A54 jl short loc_11A1C

This part of the loop is quite un-interesting. In this segment the code increments
a counter in eax until eax is greater than 15. It is obvious that it is not possible
to cause a double free error in this case because the user has no control over
the loop condition or data within the loop. This ends the investigation into a
possible double free error.

Above is a good example of how to analyze loops that may be of interest. With
all binary analysis it is important to not only identify dangerous function calls
but to also identify if the attacker can control data that might be manipulated
or referenced within a loop.

15

Chapter 6

Conclusion

During the course of this paper, the reader has had a chance to learn about
the different types of loops and some of the method of detecting them. The
reader has also gotten an in-depth view of the new IDA plug-in released with
this article. Hopefully now when the reader sees a loop, whether in code or
binary, the reader can explore the loop and determine if it is a security risk or
not.

16

Bibliography

[1] Tarjan, R. E. 1974. Testing flow graph reducibility. J Comput. Syst. Sci. 9,
355-365.

[2] Sreedhar, Vugranam, Guang Gao, & Yong-Fong Lee. Identifying loops using
DJ graphs. http://portal.acm.org/citation.cfm?id=236114.236115

[3] Flake, Halvar. Automated Reverse Engineering. http://www.blackhat.
com/presentations/win-usa-04/bh-win-04-flake.pdf

17

http://portal.acm.org/citation.cfm?id=236114.236115
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-flake.pdf
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-flake.pdf

	Foreword
	Introduction
	Algorithms Used to Detect Loops
	Natural Loop Detection
	Problems with Natural Loop Detection

	A Different Approach to Loop Detection
	Problems with new approach

	Loop Detection Using IDA Plug-ins
	Plug-in Usage
	Known Issues
	Case Study: Zone Alarm

	Conclusion

