
An Objective Analysis of the Lockdown Protection
System for Battle.net

12/2007

Skywing
skywing@valhallalegends.com



Abstract

Near the end of 2006, Blizzard deployed the first ma-
jor update to the version check and client software
authentication system used to verify the authentic-
ity of clients connecting to Battle.net using the bi-
nary game client protocol. This system had been in
use since just after the release of the original Diablo
game and the public launch of Battle.net. The new
authentication module (Lockdown) introduced a va-
riety of mechanisms designed to raise the bar with
respect to spoofing a game client when logging on to
Battle.net. In addition, the new authentication mod-
ule also introduced run-time integrity checks of client
binaries in memory. This is meant to provide simple
detection of many client modifications (often labeled
”hacks”) that patch game code in-memory in order
to modify game behavior. The Lockdown authen-
tication module also introduced some anti-debugging
techniques that are designed to make it more difficult
to reverse engineer the module. In addition, several
checks that are designed to make it difficult to simply
load and run the Blizzard Lockdown module from the
context of an unauthorized, non-Blizzard-game pro-
cess. After all, if an attacker can simply load and
run the Lockdown module in his or her own process,
it becomes trivially easy to spoof the game client lo-
gon process, or to allow a modified game client to
log on to Battle.net successfully. However, like any
protection mechanism, the new Lockdown module is
not without its flaws, some of which are discussed in
detail in this paper.

1 Introduction

The Lockdown module is a part of several schemes
that attempt to make it difficult to connect to Bat-
tle.net with a client that is not a ”genuine” Blizzard
game. For the purposes of this paper, the author con-
siders both modified/”hacked” Blizzard game clients,
and third-party client software, known as ”emubots”,
as examples of Battle.net clients that are not genuine
Blizzard games. The Battle.net protocol also incor-

porates a number of schemes (such as a proprietary
mechanism for presenting a valid CD-Key for inspec-
tion by Battle.net, and a non-standard derivative of
the SRP password exchange protocol for account lo-
gon) that by virtue of being obscure and undocu-
mented make it non-trivial for an outsider to suc-
cessfully log a non-genuine client on to Battle.net.

Prior to the launch of the Lockdown module, a dif-
ferent system took its place and filled the role of val-
idating client software versions. The previous sys-
tem was resistant to replay attacks (caveat: a rela-
tively small pool of challenge response values main-
tained by servers makes it possible to use replay at-
tacks after observing a large number of successful lo-
gon attempts) by virtue of the use of a dynamically-
supplied checksum formula that is sent to clients (a
challenge, in effect). This formula was then inter-
preted by the predecessor to the Lockdown module,
otherwise known as the ”ver” or ”ix86ver” module,
and used to create a one-way hash of several key game
client binaries. The result response would then be
sent back to the game server for verification, with an
invalid response resulting in the client being denied
access to Battle.net.

While the ”ver” module provides some inherent re-
sistance to some types of non-genuine clients (such as
those that modify Blizzard game binaries on disk), it
does little to stop in-memory modifications to Bliz-
zard game clients. Additionally, there is very little
to stop an attacker from creating their own client
software (an ”emubot”) that implements the ”ver”
module’s checksum scheme, either by calling ”ver”
directly or through the use of a third-party, reverse-
engineered implementation of the algorithm imple-
mented in the ”ver” module. It should be noted that
there exists one basic protection against third party
software calling the ”ver” module directly; the ”ver”
series of modules are designed to always run part of
the version check hash on the caller process image (as
returned by the Win32 API GetModuleFileNameA).
This poses a minor annoyance for third party pro-
grams. In order to bypass this protection, however,
one need only hook GetModuleFileNameA and fake
the result returned to the ”ver” module.

1



Given the existing ”ver” module’s capabilities, the
Lockdown module represents a major step forward
in the vein of assuring that only genuine Blizzard
client software can log on to Battle.net as a game
client. The Lockdown module is a first in many re-
spects for Blizzard with respect to releasing code that
actively attempts to thwart analysis via a debugger
(and actively attempts to resist being called in a for-
eign process with non-trivial mechanisms).

Despite the work put into the Lockdown module,
however, it has proven perhaps less effective than
originally hoped (though the author cannot state the
definitive expectations for the Lockdown module, it
can be assumed that a ”hacking life” of more than
several days was an objective of the Lockdown mod-
ule). This paper discusses the various major protec-
tion systems embedded into the Lockdown module
and associated authentication system, potential at-
tacks against them, and technical counters to these
attacks that Blizzard could take in a future release of
a new version check/authentication module.

Part of the problem the developers of the Lockdown
module faced relates to constraints on the environ-
ment in which the module operates. The author has
derived the following constraints currently in place
for the module:

1. The server portion of the authentication sys-
tem is likely static and does not generate chal-
lenge/response values in real time. Instead, a
pool of possible values appear to be pregener-
ated and configured on the server.

2. The module needs to work on all operating sys-
tems supported by all Blizzard games, which
spans the gamut from Windows 9x to Windows
Vista x64. Note that there are provisions for
different architectures, such as Mac OS, to use a
different system than Windows architectures.

3. The module needs to work on all versions of
all Blizzard Battle.net games, including previous
versions. This is due to the fact that the mod-
ule plays an integral part in Battle.net’s software

version control system, and thus is used on old
clients before they can be upgraded.

4. Legitimate users should not see a high incidence
of false positives, and it is not desirable for false
positives to result in automated permanent ac-
tion against legitimate users (such as account
closure).

As an aside, in the author’s opinion, the version check
and authentication system is not intended as a copy
protection system for Battle.net, as it does nothing to
discourge additional copies of genuine Blizzard game
software from being used on Battle.net. In essence,
the version check and authentication system is a sys-
tem that is designed to ensure that only copies of the
genuine Blizzard game software can log on to Bat-
tle.net. Copy protection measures on Battle.net are
provided through the CD-Key feature, wherein the
server requires that a user has a valid (and unique)
CD-Key (for applicable products).

2 Protection Schemes of the
Lockdown Module

As a stark contrast to the old ”ver” module, the Lock-
down module includes a number of active defense
mechanisms designed to significantly strengthen the
module’s resistance to attack (including either analy-
sis or being tricked into providing a ”good” response
to a challenge to an untrusted process).

The protection schemes in the Lockdown module can
be broken up into several categories:

1. Mechanisms to thwart analysis of the Lock-
down module itself and the secret algorithm
it implements (anti-debugging/anti-reverse-
engineering).

2. Mechanisms to thwart the successful use of
Lockdown in a hostile process to generate a
”good” response to a challenge from Battle.net
(anti-emubot, and by extension anti-hack, where

2



”anti-hack” denotes a counter to modifications of
an otherwise genuine Blizzard game client).

3. Mechanisms to thwart modifications to an
otherwise-genuine Blizzard game client that is
attempting to log on to Battle.net (anti-hack).

In addition, the Lockdown module is also responsible
for implementing a reasonable facsimile of the orig-
inal function of the ”ver” module; that is, to pro-
vide a way to authoritatively validate the version of
a genuine Blizzard game client, for means of software
version control (e.g. the deployment of the correct
software updates/patches to old versions of genuine
Blizzard game clients connecting to Battle.net).

In this vein, the following protection schemes are
present in the Lockdown module and associated au-
thentication system:

2.1 Clearing the Processor Debug
Registers

The x86 family of processors includes a set of special
registers that are designed to assist in the debugging
of programs. These registers allow a user to cause the
processor to stop when a particular memory location
is accessed, as an instruction fetch, as a data read,
or as a data write. This debugging facility allows
a user (debugger) to set up to four different virtual
addresses that will trap execution when referenced in
a particular way. The use of these debug registers
to set traps on specific locations is sometimes known
as setting a hardware breakpoint, as the processor’s
dedicated debugging support (in-hardware) is being
utilized.

Due to their obvious utility to anyone attempting to
analyze or reverse engineer the Lockdown module,
the module actively attempts to disable this debug-
ging aid by explicitly zeroing the contents of the key
debug registers in the context of the thread executing
the Lockdown module’s version check call, CheckRe-
vision. All the requisite debug registers are cleared

immediately after the call to the CheckRevision rou-
tine in the Lockdown module is made.

This protection mechanism constitutes an anti-
debugging scheme.

2.2 Memory Checksum Performed on
the Lockdown Module

The Lockdown module, contrary to the behavior of
its predecessor, implements a checksum of several key
game executable files in-memory instead of on-disk.
In addition to the checksum over certain game exe-
cutables, the Lockdown module includes itself in the
list of modules to be checksumed. This provides sev-
eral immediate benefits:

1. Attempts to set conventional software break-
points on routines inside the Lockdown module
will distort the result of the operation, frustrat-
ing reverse engineering attempts. This is due
to the fact that so-called software breakpoints
are implemented by patching the instruction at
the target location with a special instruction
(typically ‘int 3’) that causes the processor to
break into the debugger. The alteration to the
module’s executable code in memory causes the
checksum to be distorted, as the ‘int 3’ opcode
is checksumed instead of the original opcode.

2. Attempts to bypass other protection mecha-
nisms in the Lockdown module are made more
difficult, as an untrusted process that is attempt-
ing to cause the Lockdown module to produce
correct results via patching out certain other
protection mechanisms will, simply by virtue
of altering Lockdown code in-memory, inadver-
tently alter the end result of the checksum op-
eration. The success of this aspect of the mem-
ory checksum protection is related to the fact
that the Lockdown module attempts to disable
hardware breakpoints as well. These two pro-
tection mechanisms thus complement eachother
in a strong fashion, such that a naive attempt to
compromise one of the protection schemes would

3



usually be detected by the other scheme. In
effect, the result is a rudimentary ”defense in
depth” approach to software protection schemes
that is the hallmark of most relatively successful
protection schemes.

3. The inclusion of the version check module itself
in the result of the output of the checksum is
entirely new to the version check and client au-
thentication system, and as such poses an ad-
ditional, unexpected ”speed bump” to persons
attempting to reimplement the Lockdown algo-
rithm in their own code.

This protection mechanism has characteristics of
both an anti-debugging, anti-hack, and anti-emubot
system.

2.3 Hardcoding of Module Base Ad-
dresses

As mentioned previously, the Lockdown module now
implements a checksum over game executables in-
memory instead of on-disk. Taking advantage of this
change, the Lockdown module can hardcode the base
address of the main process executable at the default
address of 0x00400000. This is safe because no Bliz-
zard game executable includes base relocation infor-
mation, and as a result will never change from this
base address.

By virtue of hardcoding this address, it becomes more
difficult for an untrusted process to successfully call
the Lockdown module. Unless the programmer is
particularly clever, he or she may not notice that
the Lockdown module is not actually performing a
checksum over the main executable for the desired
Blizzard game, but instead the main executable of
the untrusted process (the default address for exe-
cutables in the Microsoft linker program is the same
0x00400000 value used in Blizzard’s main executables
comprising their game clients).

While it is possible to change the base address of
a program at link-time, which could be done by a

third-party process in an attempt to make it possi-
ble to map the desired Blizzard main executable at
the 0x00400000 address, it is difficult to pull this off
under Windows NT. This is because the 0x00400000
address is low in the address space, and the default
behavior of the kernel’s memory manager is to find
new addresses for memory allocations starting from
the bottom of the address space. This means that
in virtually all cases, a virgin Win32 process will al-
ready have an allocation (usually one of the shared
sections used for communication with CSRSS in the
author’s experience) that is overlapping the address
range required by the Lockdown module for the main
executable of the Blizzard game for which a chal-
lenge response is being computed. While it is pos-
sible to change this behavior in the Windows NT
memory manager and cause allocations to start at
the top of the address space and search downwards,
this is not the default configuration and is also a rel-
atively not-well-known kernel option. The fact that
all users would need to be reconfigured to change the
default allocation search preference for an untrusted
process to typically successfully map the desired Bliz-
zard game executable makes this approach relatively
painful for a would-be attacker.

The Lockdown module also ensures that the return
value of the GetModuleHandleA(0) Win32 API corre-
sponds to 0x00400000, indicating that the main pro-
cess image is based at 0x00400000 as far as the loader
is concerned. The restriction on the base address of
the game main executable module has the unfortu-
nate side effect that it will not be possible to take
advantage of Windows Vista’s ASLR attack surface
reduction capabilities, negatively impacting the resis-
tance of Blizzard games to certain classes of exploita-
tion that might impact the security of users.

This protection mechanism is primarily considered
to be an anti-emubot scheme, as it is designed to
guard against an untrusted process from succcessfully
calling the Lockdown module.

4



2.4 Video Memory Checksum

Another previously nonexistant component to the
version check algorithm that is introduced by the
Lockdown module is a checksum over the video mem-
ory of the process calling the Lockdown module.
At the point in time where the module is invoked
by the Blizzard game, the portion of video memory
checksummed should correspond to part of the ”Bat-
tle.net” banner in the log on screen for the Blizzard
game. The Lockdown module is currently only imple-
mented for so-called ”legacy” game clients, otherwise
known as clients that use Battle.snp and the Storm
Network Provider system for multiplayer access. This
includes all Battle.net-capable Blizzard games rang-
ing from Diablo I to Starcraft and Warcraft II: BNE.
Future games, such as Diablo II, are not supported
by the Lockdown module.

This represents an additional non-trivial challenge
to a would-be attacker. Although the contents of
the video memory to be checksummed is static, the
way that the Lockdown module retrieves the video
memory pointers is through an obfuscated call to
several internal Storm routines (SDrawSelectGdiSur-
face, SDrawLockSurface, and SDrawUnlockSurface)
that rely on a non-trivial amount of internal state
initialized by the Blizzard game during startup. This
makes the use of the internal Storm routines unlikely
to simply work ”out of the box” in an untrusted pro-
cess that has not gone to all the trouble to initialize
the Storm graphics subsystem and draw the appro-
priate data on the Storm video surfaces.

This protection mechanism is primarily considered
to be an anti-emubot scheme, as it is designed to
guard against an untrusted process from succcessfully
calling the Lockdown module.

2.5 Multiple Flavors of the Lockdown
Module

The original ”ver” module scheme pioneered a system
wherein there were multiple downloadable flavors of
the version check module to be used by a client. The

Battle.net server sends the client a tuple of (version
check module filename, checksum formula and initial-
ization parameters, version check module timestamp)
that is used in order to version (and download, if nec-
essary) the latest copy of the version check module.
This mechanism provides for the possibility that the
Battle.net server could support multiple ”flavors” of
version check module that could be distributed to
clients in order to increase the amount of work re-
quired by anyone seeking to reimplement the version
check and authentication system.

The original ”ver” module and associated authenti-
cation scheme in fact utilized such a scheme of mul-
tiple ”ver” modules, and the Lockdown scheme ex-
pands upon this trend. In the original system, there
were 8 possible modules to choose from; the Lock-
down system, by contrast, expands this to a set of
20 possibilities. However, the version check modules
in both systems are still very similar to one another.
In both systems, each module has its own unique key
(a 32-bit values in the ”ver” system, and a 64-bit
value in the Lockdown system) that is used to in-
fluence the result of the version check checksum (it
should be noted that in the Lockdown system, the
actual Lockdown module itself is in essence a sec-
ond ”key”, as the added checksum over the mod-
ule represents an additional adjustment to the final
checksum result that changes with each Lockdown
module). This single difference is disguised by other
minor, superficial alterations to each module flavor;
there are slight differences by which module base ad-
dresses are retrieved, for instance, and there are also
other superficial differences that relate to differences
like code being moved between functions or functions
being re-arranged in the final binary in order to frus-
trate a simple ”diff” of two Lockdown modules as be-
ing informative in revealing the functional differences
between the said two modules.

This protection mechanism is perhaps best classed
as an anti-analysis scheme, as it attempts to create
more work for anyone attempting to reverse engineer
the authentication system as a whole.

5



2.6 Authenticity Check Performed on
Lockdown Module Caller

An additional new protection scheme introduced in
the Lockdown module is a rudimentary check on the
authenticity of the caller of the module’s export, the
CheckRevision routine. Specifically, the module at-
tempts to ascertain whether the return address of the
call to the CheckRevision routine points to a code
location within the Battle.snp module. If the return
pointer for the call to CheckRevision is not within the
expected range, then an error is deliberately intro-
duced into the checksum calculations, ultimately re-
sulting in the result returned by the Lockdown mod-
ule becoming invalidated.

3 Attacks (and Counter-
Attacks) on the Lockdown
System

Though the Lockdown module introduces a number
of new defensive mechanisms that attempt to thwart
would-be attackers, these systems are far from fool-
proof. There are a number of ways that these defen-
sive systems could be attacked (or subverted) by a
would-be attacker who wishes to pass the version and
authentication check in the context of a non-genuine
client for purposes of logging on to Battle.net. In ad-
dition, there are also a variety of different ways by
which these proposed attacks could be thwarted in a
future update to the version check and authentication
system.

3.1 Interception of SetThreadContext

As previously described, the Lockdown modules at-
tempt to disable the use of the processor’s comple-
ment of debug registers in order to make it difficult
to utilize so-called hardware breakpoints during the
process of reverse engineering or analyzing a Lock-
down module. This scheme is, at present, relatively

easily compromised, however.

There are several possible attacks that could be used:

1. Hook the SetThreadContext API and block at-
tempts to disable debug registers (program-
matic).

2. Patch the import address table entry for Set-
ThreadContext in the Lockdown module to
point to a custom routine that does nothing (pro-
grammatic).

3. Patch the Lockdown module instruction code to
not call SetThreadContext in the first place (pro-
grammatic). However, this is approach is consid-
ered to be generally untenable, due to the mem-
ory checksum protection scheme.

4. Set a conditional breakpoint on ‘ker-
nel32!SetThreadContext’ that re-applies the
hardware breakpoint” state after the call, or
simply alters execution flow to immediately
return (debugger).

Depending on whether the attacker wants to make
programmatic alterations to the behavior of the Lock-
down module via hardware breakpoints, or simply
wishes to observe the behavior of the module in
the debugger unperturbed, there are several options
available.

The suggested counters include techniques such as
the following:

1. Verify that the debug registers were really
cleared. However, this could simply be patched
out as well. More subtle would be to include the
value of several debug registers in the checksum
calculations, but this would also be fairly obvi-
ous to attackers due to the fact that debug regis-
ters cannot be directly accessed from user mode
and require a call to Get/SetThreadContext,
or the underlying NtGet/SetContextThread sys-
tem calls.

6



2. Include additional calls to disable debug register
usage in different locations within the Lockdown
module. To be most effective, these would need
to be inlined and use different means to set the
debug register state. For example, one location
could use a direct import, another could use a
GetProcAddress dynamic import, a third could
manually walk the EAT of kernel32 to find the
address of SetThreadContext, and a fourth could
make a call to NtSetContextThread in ntdll, and
a fifth could disassemble the opcodes compris-
ing NtSetContextThread, determine the system
call ordinal, and make the system call directly
(e.g. via ‘int 2e’). The goal here is to add addi-
tional work and eliminate ”single points of fail-
ure” from the perspective of an attacker seeking
to disable the anti-debugging feature. Note that
the direct system call approach will require ad-
ditional work in order to function under Wow64
(e.g. x64 computers running native Windows
x64).

3. Verify that all IAT entries corresponding to ker-
nel32 actually point to the same module in-
memory. This is risky, though, as in some cases
(such as when the Microsoft application compat-
ibility layer module is in use), these APIs may
be legitimately detoured.

3.2 Use of Hardware Breakpoints

Assuming an attacker can compromise the anti-
debugging protection scheme, then he or she is free
to make clever use of hardware breakpoints to disable
other protection systems (such as hardcoded base ad-
dresses of modules, checks on the authenticity of a
CheckRevision caller, and soforth) by setting execute
fetch breakpoints on choice code locations. Then,
the attacker could simply alter the execution con-
text when the breakpoints are hit, in order to bypass
other protection mechanisms. For example, an at-
tacker could set a read breakpoint on the hardcoded
base address for the main process image inside the
Lockdown module, and change the base address ac-
cordingly. The attacker would also have to patch

GetModuleHandleA in order to complete this exam-
ple attack.

Suggested counters to attacks based on hardware
breakpoints include:

1. Validation of the vectored exception handler
chain, which might be used to intercept STA-
TUS SINGLE STEP exceptions when hardware
breakpoints are hit. This is risky, as there are
legitimate reasons for there to be ”foreign” vec-
tored exception handlers, however.

2. Checks to stop debuggers from attaching to the
process, period. This is not considered to be a
viable solution since there are a number of le-
gitimate reasons for a debugger to be attached
to a process, many of them which may be un-
known completely to the end user (such as pro-
filers, crash control and reporting systems, and
other types of security software). Attempting
to block debuggers may also prevent the nor-
mal operation of Windows Error Reporting or
a preconfigured JIT debugger in the event of a
game crash, depending on the implementation
used. Ways of detecting debuggers include calls
to IsDebuggerPresent, NtQueryInformation-
Process(...ProcessDebugPort..), checks against
NtCurrentPeb()-¿BeingDebugged, and soforth.

3. Duplication of checks (perhaps in slightly altered
forms) throughout the execution of the checksum
implementation. It is important for this duplica-
tion to be inline as much as possible in order to
eliminate single points of failure that could be
used to short-circuit protection schemes by an
attacker.

4. Strengthening of the anti-debugging mechanism,
as previously described.

3.3 Main Process Image Module Base
Address Restriction

An attacker seeking to execute the Lockdown mod-
ule in an untrusted process would need to bypass the

7



restrictions on the base address of the main process
image. The most likely approach to this would be a
combination attack, whereby the attacker would use
something like a set of hardware breakpoints to alter
the hardcoded restrictions on module base addresses,
and import table or code patch style hooks on the
GetModuleHandleA API in order to defeat the sec-
ondary check on the module base address for the main
executable image.

Another approach would be to simply create the main
executable image as a process, suspended, and then
either create a new thread in the process or assume
control of the initial thread in order to execute the
Lockdown module. This gets the would-be attacker
out of having to patch checks in the module, as there
is currently no defense against this case implemented
in the module.

In order to strengthen this protection mechanism, the
following approaches could be taken:

1. Manually traverse the loaded module list (and
examine the PEB) in order to validate that the
main process image is really at 0x00400000. All
of these mechanisms could be compromised, but
checking each one creates additional work for an
attacker.

2. Verify that the game has initialized itself to some
extent. This would make the approach of creat-
ing the game process suspended more difficult. It
would also otherwise make the use of the Lock-
down module in an untrusted process more dif-
ficult without tricking the module into believ-
ing that it is running in an initialized game pro-
cess. The scope of determining how the game is
initialized is outside of this paper, although an
approach similar to the current one based on a
checksum of Storm video memory (though with
more ”redundancy”, or an additional matrix of
requirements for a legitimate game process).

3.4 Minor Functional Differences Be-
tween Lockdown Module Flavors

Presently, an attacker needs to implement all flavors
of the Lockdown module in order to be assured of a
successful connection to Battle.net. However, even
with the 20 possibilities now available, this is still
not difficult due to the minor functional differences
between the different Lockdown flavors. Moreso, it
is trivially possible to find the ”magic” constants
that constitute the only functional differences be-
tween each flavor of Lockdown.

In the author’s tests, two pattern matches and a
small 200-line C program were all that were neces-
sary to programmatically identify all of the magical
constants that represent the functional differences be-
tween each flavor of Lockdown module, in a com-
pletely automated fashion. In fact, the author would
wager that it took more time to implement all 20 dif-
ferent flavors of Lockdown modules than it took to de-
vise and implement a rudimentary pattern matching
system to automagically discover all 20 magical con-
stants from the set of 20 Lockdown module flavors.
Clearly, this is not desirable from the standpoint of
effort put in to the protection scheme vs difficulty in
attacking it.

In order to address these weaknesses, the following
steps could be implemented:

1. Implement true, major functional differences be-
tween Lockdown flavors. Instead of using a sin-
gle constant value that is different between each
flavor (probably a ”#define” preprocessor con-
stant), implement other, real functional differ-
ences. Otherwise, even with a number of differ-
ent ”non-functional” differences between module
flavors, a pattern-matching system will be able
to quickly locate the different constants for each
module after a human attacker has discovered
the constant for at least one module flavor.

2. Avoid using quick-to-substitute constants as the
”meat” of the functional differences betwene fla-
vors. While these are convenient from a develop-

8



ment perspective, they are also convenient from
an attacker perspective. If a bit more time were
spent from a development perspective, attackers
could be made to do real analysis of each module
separately in order to determine the actual func-
tional differences, greatly increasing the amount
of time that is required for an attacker to defeat
this protection scheme.

3.5 Spoofed Return Address for
CheckRevision Calls

Due to how the x86 architecture works, it is trivially
easy to spoof the return address pointer for a proce-
dure call. All that one must do is push the spoofed
return address on the stack, and then immediately
execute a direct jump to the target procedure (as op-
posed to a standard call).

As a result, it is fairly trivial to bypass this protec-
tion mechanism at run-time. One need only search
for a ‘ret’ opcode in the code space of the Battle.snp
module in memory, and use the technique described
previously to simply ”bounce” the call off of Bat-
tle.snp via the use of a spoofed return address. To
the Lockdown module, the call will appear to orig-
inate from the context of Battle.snp, but in reality
the call will immediately return from Battle.snp to
the real caller in the untrusted process.

To counter this, the following could be attempted:

1. Verify two return addresses deep, although due
to the nature of the x86 calling conventions (at
least stdcall and fastcall, the two used by
Blizzard code frequently), it is not guaranteed
that four bytes past the return address will be a
particularly meaningful value.

2. Verify that the return address does not point di-
rectly to a ‘ret’, ‘jmp’, ‘call’ or similar instruc-
tion, assuming that current Battle.snp variations
do not use such patterns in their call to the mod-
ule. This only slightly raises the bar for an at-
tacker, though; he or she would only need pick

a more specific location in Battle.snp through
which to stage a call, such as the actual location
used in normal calls to the Lockdown module.

3.6 Limited Pool of Chal-
lenge/Response Tuples

Presently, the Battle.net servers contain a fairly lim-
ited pool of possible challenge/response pairs for
the version check and authentication system. Ob-
servations suggest that most products have a pool
of around one thousand values that can be sent to
clients. This has been used against Battle.net in the
past, which was countered by an increase to 20000
possible values for several Battle.net products. Even
with 20000 possible values, though, it is still possible
to capture a large number of logon attempts over time
and build a lookup table of possible values. This is
an attractive option for an attacker, as he or she need
only perform passive analysis over a period of time in
order to construct a database capable of logging on to
Battle.net with a fairly high success rate. Given the
relative infrequency of updates to the pool of version
check values (typically once per patch), this is con-
sidered to be a fairly viable method for an attacker to
bypass the version check and authentication system.

This limitation could easily be addressed by Blizzard,
however, such as through the implementation of one
or more of the below suggestions:

1. Periodically rotate the set of possible version
check values so as to ensure that a database
of challenge/response pairs would quickly ex-
pire and need to be rebuilt. Combined with
a large pool of possible values, this approach
would greatly reduce the practicality of this at-
tack. Unfortunately, the author suspects that
this would require manual intervention each time
the pools were to be rotated by the part of Bliz-
zard in the current Battle.net server implemen-
tation.

2. Implement dynamic generation of pool values at
runtime on each Battle.net server. This would

9



require the server to have access to the requi-
site client binaries, but is not expected to be a
major challenge (especially since the author sus-
pects that Battle.net is powered by Windows al-
ready, which would allow the existing Lockdown
module code to be cleaned up and repackaged for
use on the server as well). This could be imple-
mented as a pool of possible values that is simply
stirred every so often; new challenge/response
values need not necessarily be generated on each
logon attempt (and doing so would have unde-
sirable performance implications in any case).

4 Conclusion

Although the Lockdown module and associated au-
thentication system represent a major break in Bliz-
zard’s ongoing battle against non-genuine Battle.net
client software, there are still many improvements
that could be made in a future release of the ver-
sion check and authentication system which would fit
within the constraints imposed on the version check
system, and still pose a significant challenge to an
adversary attempting to spoof Battle.net logons us-
ing a non-genuine clients. The author would en-
courage Blizzard to consider and implement enhance-
ments akin to those described in this paper, partic-
ularly protections that overlap and complement each
other (such as the debug register clearing and mem-
ory checksum schemes).

In the vein of improving the Lockdown system, the
author would like to stress the following principles
as especially important in creating a system that is
difficult to defeat and yet still workable and viable
from a development and deployment perspective:

1. Defense in depth with respect to the various pro-
tection mechanisms in place within the module
is a must. Protection systems need to be de-
signed to complement and reinforce eachother,
such that an attacker must defeat a number of
layers of protection schemes for any one signif-
icant attack to succeed to the point of being a

break in the system.

2. Countermeasures intended to frustrate reverse
engineering or easy duplication of critical algo-
rithms need to be viewed in the light of what an
adversary might do in order to ’attack’ (or du-
plicate, re-implement, or whatnot) a ’guarded’
(or otherwise important) algorithm or section of
code. For example, an attacker could ease the
work of reimplementing parts of an algorithm
or function of interest by wholesale copying of
assembler code into a different module, or by
loading an ”authentic” module and making di-
rect calls into internal functions (or the middle
of internal functions) in an effort to bypass ”up-
stream” protection checks. Keeping with this
line of thinking, it would be advisible to in-
terleave protection checks with code that per-
forms actual useful work to a certain degree,
such that it is less trivial for an adversary to by-
pass protection checks that are entirely done ”up
front” (leaving the remainder of a secret algo-
rithm or function relatively ”vulnerable”, if the
check code is skipped entirely).

3. Countermeasures intended to create ”time sinks”
for an adversary need to be carefully designed
such that they are not easily bypassed. For in-
stance, in the current Lockdown module imple-
mentation, there are twenty flavors of the Lock-
down module; yet, in this implementation, it is
trivially easy for an adversary to discover the
differences (in a largely programmatic fashion),
making this ”time sink” highly ineffective, as the
time for an adversary to breach it is likely much
less than the time for the original developers to
have created it.

4. Measures that depend on external, imported
APIs are often relatively easy for an attacker to
quickly pinpoint and disable (for example, the
method that debug register breakpoints are dis-
abled by the Lockdown module is immediately
obvious to an adversary, if they are even the
least bit familiar with the Win32 API (which
must be assumed). In some cases (such as with
the debug register breakpoint clearing code), this

10



cannot be avoided, but in others (such as vali-
dation of module base addresses), the same ef-
fect could be potentially implemented by use of
less-obvious approaches (for example manually
traversing the loaded module list by locating the
PEB and the loader data structures from the
backlink pointer in the current thread’s TEB).
The author would encourage the developers of
additional defensive measures to reduce depen-
dencies on easily-noticible external APIs as much
as possible (balanced, of course, against the need
for maintainable code that executes on all sup-
ported platforms). In some instances, such as
the manual resolution of Storm symbols, the cur-
rent system does do a fair job of avoiding easily-
detectable external API use.

All things considered, the Lockdown system repre-
sents a major step forward in the vein of guarding
Battle.net from unauthorized clients. Even so, there
is still plenty of room for improvements in potential
future revisions of the system. The author hopes that
this article may prove useful in the strengthening of
future defensive systems, by virtue of a thorough ac-
counting of the strengths and weaknesses in the cur-
rent Lockdown module (and pointed suggestions as
to how to repair certain weaker mechanisms in the
current implementation).

11


	Introduction
	Protection Schemes of the Lockdown Module
	Clearing the Processor Debug Registers
	Memory Checksum Performed on the Lockdown Module
	Hardcoding of Module Base Addresses
	Video Memory Checksum
	Multiple Flavors of the Lockdown Module
	Authenticity Check Performed on Lockdown Module Caller

	Attacks (and Counter-Attacks) on the Lockdown System
	Interception of SetThreadContext
	Use of Hardware Breakpoints
	Main Process Image Module Base Address Restriction
	Minor Functional Differences Between Lockdown Module Flavors
	Spoofed Return Address for CheckRevision Calls
	Limited Pool of Challenge/Response Tuples

	Conclusion

