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Chapter 1

Foreword

Abstract: This paper proposes a technique that can be used to prevent the
exploitation of SEH overwrites on 32-bit Windows applications without requir-
ing any recompilation. While Microsoft has attempted to address this attack
vector through changes to the exception dispatcher and through enhanced com-
piler support, such as with /SAFESEH and /GS, the majority of benefits they
offer are limited to image files that have been compiled to make use of the com-
piler enhancements. This limitation means that without all image files being
compiled with these enhancements, it may still be possible to leverage an SEH
overwrite to gain code execution. In particular, many third-party applications
are still vulnerable to SEH overwrites even on the latest versions of Windows
because they have not been recompiled to incorporate these enhancements. To
that point, the technique described in this paper does not rely on any compile
time support and instead can be applied at runtime to existing applications
without any noticeable performance degradation. This technique is also back-
ward compatible with all versions of Windows NT+, thus making it a viable
and proactive solution for legacy installations.

Thanks: The author would like to thank all of the people who have helped with
offering feedback and ideas on this technique. In particular, the author would
like to thank spoonm, H D Moore, Skywing, Richard Johnson, and Alexander
Sotirov.
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Chapter 2

Introduction

Like other operating systems, the Windows operating system finds itself vulner-
able to the same classes of vulnerabilities that affect other platforms, such as
stack-based buffer overflows and heap-based buffer overflows. Where the plat-
forms differ is in terms of how these vulnerabilities can be leveraged to gain
code execution. In the case of a conventional stack-based buffer overflow, the
overwriting of the return address is the most obvious and universal approach.
However, unlike other platforms, the Windows platform has a unique vector
that can, in many cases, be used to gain code execution through a stack-based
overflow that is more reliable than overwriting the return address. This vector
is known as a Structured Exception Handler (SEH) overwrite. This attack vec-
tor was publicly discussed for the first time, as far as the author is aware, by
David Litchfield in his paper entitled Defeating the Stack Based Buffer Overflow
Prevention Mechanism of Microsoft Windows 2003 Server [2]1.

In order to completely understand how to go about protecting against SEH
overwrites, it’s prudent to first spend some time describing the intention of the
facility itself and how it can be abused to gain code execution. To provide this
background information, a description of structured exception handling will be
given in section 2.1. Section 2.2 provides an illustration of how an SEH overwrite
can be used to gain code execution. If the reader already understands how struc-
tured exception handling works and can be exploited, feel free to skip ahead.
The design of the technique that is the focus of this paper will be described
in chapter 3 followed by a description of a proof of concept implementation in
chapter 4. Finally, potential compatibility issues are noted in chapter 5.

1However, exploits had been using this technique prior to the publication, so it is unclear
who originally found the technique
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2.1 Structured Exception Handling

Structured Exception Handling (SEH) is a uninform system for dispatching and
handling exceptions that occur during the normal course of a program’s execu-
tion. This system is similar in spirit to the way that UNIX derivatives use signals
to dispatch and handle exceptions, such as through SIGPIPE and SIGSEGV. SEH,
however, is a more generalized and powerful system for accomplishing this task,
in the author’s opinion. Microsoft’s integration of SEH spans both user-mode
and kernel-mode and is a licensed implementation of what is described in a
patent owned by Borland[1]. In fact, this patent is one of the reasons why open
source operating systems have not chosen to integrate this style of exception
dispatching[11].

In terms of implementation, structured exception handling works by defining a
uniform way of handling all exceptions that occur during the normal course of
process execution. In this context, an exception is defined as an event that oc-
curs during execution that necessitates some form of extended handling. There
are two primary types of exceptions. The first type, known as a hardware ex-
ception, is used to categorize exceptions that originate from hardware. For
example, when a program makes reference to an invalid memory address, the
processor will raise an exception through an interrupt that gives the operat-
ing system an opportunity to handle the error. Other examples of hardware
exceptions include illegal instructions, alignment faults, and other architecture-
specific issues. The second type of exception is known as a software exception.
A software exception, as one might expect, originates from software rather than
from the hardware. For example, in the event that a process attempts to close
an invalid handle, the operating system may generate an exception.

One of the reasons that the word structured is included in structured exception
handling is because of the fact that it is used to dispatch both hardware and
software exceptions. This generalization makes it possible for applications to
handle all types of exceptions using a common system, thus allowing for greater
application flexibility when it comes to error handling.

The most important detail of SEH, insofar as it pertains to this document, is
the mechanism through which applications can dynamically register handlers
to be called when various types of exceptions occur. The act of registering an
exception handler is most easily described as inserting a function pointer into a
chain of function pointers that are called whenever an exception occurs. Each
exception handler in the chain is given the opportunity to either handle the
exception or pass it on to the next exception handler.

At a higher level, the majority of compiler-generated C/C++ functions will
register exception handlers in their prologue and remove them in their epilogue.
In this way, the exception handler chain mirrors the structure of a thread’s stack
in that they are both LIFOs (last-in-first-out). The exception handler that was
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registered last will be the first to be removed from the chain, much the same as
last function to be called will be the first to be returned from.

To understand how the process of registering an exception handler actually
works in practice, it makes sense to analyze code that makes use of exception
handling. For instance, the code below illustrates what would be required to
catch all exceptions and then display the type of exception that occurred:

__try
{

...
} __except(EXCEPTION_EXECUTE_HANDLER)
{

printf("Exception code: %.8x\n", GetExceptionCode());
}

In the event that an exception occurs from code inside of the try / except
block, the printf call will be issued and GetExceptionCode will return the ac-
tual exception that occurred. For instance, if code made reference to an invalid
memory address, the exception code would be 0xc0000005, or EXCEPTION ACCESS VIOLATION.
To completely understand how this works, it is necessary to dive deeper and take
a look at the assembly that is generated from the C code described above. When
disassembled, the code looks something like what is shown below:

00401000 55 push ebp
00401001 8bec mov ebp,esp
00401003 6aff push 0xff
00401005 6818714000 push 0x407118
0040100a 68a4114000 push 0x4011a4
0040100f 64a100000000 mov eax,fs:[00000000]
00401015 50 push eax
00401016 64892500000000 mov fs:[00000000],esp
0040101d 83c4f4 add esp,0xfffffff4
00401020 53 push ebx
00401021 56 push esi
00401022 57 push edi
00401023 8965e8 mov [ebp-0x18],esp
00401026 c745fc00000000 mov dword ptr [ebp-0x4],0x0
0040102d c6050000000001 mov byte ptr [00000000],0x1
00401034 c745fcffffffff mov dword ptr [ebp-0x4],0xffffffff
0040103b eb2b jmp ex!main+0x68 (00401068)
0040103d 8b45ec mov eax,[ebp-0x14]
00401040 8b08 mov ecx,[eax]
00401042 8b11 mov edx,[ecx]
00401044 8955e4 mov [ebp-0x1c],edx
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00401047 b801000000 mov eax,0x1
0040104c c3 ret

0040104d 8b65e8 mov esp,[ebp-0x18]
00401050 8b45e4 mov eax,[ebp-0x1c]
00401053 50 push eax
00401054 6830804000 push 0x408030
00401059 e81b000000 call ex!printf (00401079)
0040105e 83c408 add esp,0x8
00401061 c745fcffffffff mov dword ptr [ebp-0x4],0xffffffff
00401068 8b4df0 mov ecx,[ebp-0x10]
0040106b 64890d00000000 mov fs:[00000000],ecx
00401072 5f pop edi
00401073 5e pop esi
00401074 5b pop ebx
00401075 8be5 mov esp,ebp
00401077 5d pop ebp
00401078 c3 ret

The actual registration of the exception handler all occurs behind the scenes in
the C code. However, in the assembly code, the registration of the exception
handler starts at 0x0040100a and spans four instructions. It is these four in-
structions that are responsible for registering the exception handler for the call-
ing thread. The way that this actually works is by chaining an EXCEPTION REGISTRATION RECORD
to the front of the list of exception handlers. The head of the list of already
registered exception handlers is found in the ExceptionList attribute of the
NT TIB structure. If no exception handlers are registered, this value will be
set to 0xffffffff. The NT TIB structure makes up the first part of the TEB, or
Thread Environment Block, which is an undocumented structure used internally
by Windows to keep track of per-thread state in user-mode. A thread’s TEB can
be accessed in a position-independent fashion by referencing addresses relative
to the fs segment register. For example, the head of the exception list chain be
be obtained through fs:[0].

To make sense of the four assembly instructions that register the custom ex-
ception handler, each of the four instructions will be described individually.
For reference purposes, the layout of the EXCEPTION REGISTRATION RECORD is
described below:

+0x000 Next : Ptr32 _EXCEPTION_REGISTRATION_RECORD
+0x004 Handler : Ptr32

1. push 0x4011a4

The first instruction pushes the address of the CRT generated except handler3
symbol. This routine is responsible for dispatching general exceptions that
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are registered through the except compiler intrinsic. The key thing to
note here is that the virtual address of a function is pushed onto the
stack that is excepted to be referenced in the event that an exception is
thrown. This push operation is the first step in dynamically construct-
ing an EXCEPTION REGISTRATION RECORD on the stack by first setting the
Handler attribute.

2. mov eax,fs:[00000000]

The second instruction takes the current pointer to the first EXCEPTION REGISTRATION RECORD
and stores it in eax.

3. push eax

The third instruction takes the pointer to the first exception registra-
tion record in the exception list and pushes it onto the stack. This, in
turn, sets the Next attribute of the record that is being dynamically
generated on the stack. Once this instruction completes, a populated
EXCEPTION REGISTRATION RECORD will exist on the stack that takes the
following form:

+0x000 Next : 0x0012ffb0
+0x004 Handler : 0x004011a4 ex!_except_handler3+0

4. mov fs:[00000000],esp

Finally, the dynamically generated exception registration record is stored
as the first exception registration record in the list for the current thread.
This completes the process of inserting a new registration record into the
chain of exception handlers.

The important things to take away from this description of exception handler
registration are as follows. First, the registration of exception handlers is a
runtime operation. This means that whenever a function is entered that makes
use of an exception handler, it must dynamically register the exception handler.
This has implications as it relates to performance overhead. Second, the list
of registered exception handlers is stored on a per-thread basis. This makes
sense because threads are considered isolated units of execution and therefore
exception handlers are only relative to a particular thread. The final, and
perhaps most important, thing to take away from this is that the assembly
generated by the compiler to register an exception handler at runtime makes
use of the current thread’s stack. This fact will be revisited later in this section.

In the event that an exception occurs during the course of normal execution,
the operating system will step in and take the necessary steps to dispatch
the exception. In the event that the exception occurred in the context of a
thread that is running in user-mode, the kernel will take the exception in-
formation and generate an EXCEPTION RECORD that is used to encapsulate all
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of the exception information. Furthermore, a snapshot of the executing state
of the thread is created in the form of a populated CONTEXT structure. The
kernel then passes this information off to the user-mode thread by transfer-
ring execution from the location that the fault occurred at to the address
of ntdll!KiUserExceptionDispatcher. The important thing to understand
about this is that execution of the exception dispatcher occurs in the context of
the thread that generated the exception.

The job of ntdll!KiUserExceptionDispatcher is, as the name implies, to
dispatch user-mode exceptions. As one might guess, the way that it goes about
doing this is by walking the chain of registered exception handlers stored relative
to the current thread. The diagram in figure 2.1 provides a basic example of
how it walks the chain. As the exception dispatcher walks the chain, it calls
the handler associated with each registration record, giving that handler the
opportunity to handle, fail, or pass on the exception.

Figure 2.1: Walking the chain of exception registration records

While there are other things involved in the exception dispatching process, this
description will suffice to set the stage for how it might be abused to gain code
execution.

2.2 Gaining Code Execution

There is one important thing to remember when it comes to trying to gain code
execution through an SEH overwrite. Put simply, the fact that each excep-
tion registration record is stored on the stack lends itself well to abuse when
considered in conjunction with a conventional stack-based buffer overflow. As
described in section 2.1, each exception registration record is composed of a
Next pointer and a Handler function pointer. Of most interest in terms of ex-
ploitation is the Handler attribute. Since the exception dispatcher makes use
of this attribute as a function pointer, it makes sense that should this attribute
be overwritten with attacker controlled data, it would be possible to gain code
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execution. In fact, that’s exactly what happens, but with an added catch.

While typical stack-based buffer overflows work by overwriting the return ad-
dress, an SEH overwrite works by overwriting the Handler attribute of an ex-
ception registration record that has been stored on the stack. Unlike overwriting
the return address, where control is gained immediately upon return from the
function, an SEH overwrite does not actually gain code execution until after an
exception has been generated. The exception is necessary in order to cause the
exception dispatcher to call the overwritten Handler.

While this may seem like something of a nuisance that would make SEH over-
writes harder to exploit, it’s not. Generating an exception that leads to the
calling of the Handler is as simple as overwriting the return address with an
invalid address in most cases. When the function returns, it attempts to exe-
cute code from an invalid memory address which generates an access violation
exception. This exception is then passed onto the exception dispatcher which
calls the overwritten Handler.

The obvious question to ask at this point is what benefit SEH overwrites have
over the conventional practice of overwriting the return address. To under-
stand this, it’s important to consider one of the common practices employed in
Windows-based exploits. On Windows, thread stack addresses tend to change
quite frequently between operating system revisions and even across process in-
stances. This differs from most UNIX derivatives where stack addresses are typ-
ically predictable across multiple operating system revisions. Due to this fact,
most Windows-based exploits will indirectly transfer control into the thread’s
stack by first bouncing off an instruction that exists somewhere in the address
space. This instruction must typically reside at an address that is less prone to
change, such as within the code section of a binary. The purpose of this instruc-
tion is to transfer control back to the stack in a position-independent fashion.
For example, a jmp esp instruction might be used. While this approach works
perfectly fine, it’s limited by whether or not an instruction can be located that
is both portable and reliable in terms of the address that it resides at. This is
where the benefits of SEH overwrites begin to become clear.

When simply overwriting the return address, an attacker is often limited to a
small set of instructions that are not typically common to find at a reliable and
portable location in the address space. On the other hand, SEH overwrites have
the advantage of being able to use another set of instructions that are far more
prevalent in the address space of most every process. This set of instructions
is commonly referred to as pop/pop/ret. The reason this class of instructions
can be used with SEH overwrites and not general stack overflows has to do with
the method in which exception handlers are called by the exception dispatcher.
To understand this, it is first necessary to know what the specific prototype is
for the Handler field in the EXCEPTION REGISTRATION RECORD structure:

typedef EXCEPTION_DISPOSITION (*ExceptionHandler)(
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IN EXCEPTION_RECORD ExceptionRecord,
IN PVOID EstablisherFrame,
IN PCONTEXT ContextRecord,
IN PVOID DispatcherContext);

The field of most importance is the EstablisherFrame. This field actually
points to the address of the exception registration record that was pushed onto
the stack. It is also located at [esp+8] when the Handler is called. Therefore,
if the Handler is overwritten with the address of a pop/pop/ret sequence, the
result will be that the execution path of the current thread will be transferred to
the address of the Next attribute for the current exception registration record.
While this field would normally hold the address of the next registration record,
it instead can hold four bytes of arbitrary code that an attacker can supply
when triggering the SEH overwrite. Since there are only four contiguous bytes
of memory to work with before hitting the Handler field, most attackers will use
a simple short jump sequence to jump past the handler and into the attacker
controlled code that comes after it. Figure 2.2 illustrates what this might look
like after an attacker has overwritten an exception registration record in the
manner described above.

Figure 2.2: Gaining code execution from an SEH overwrite

10



Chapter 3

Design

The one basic requirement of any solution attempting to prevent the leveraging
of SEH overwrites is that it must not be possible for an attacker to be able to
supply a value for the Handler attribute of an exception registration record that
is subsequently used in an unchecked fashion by the exception dispatcher when
an exception occurs. If a solution can claim to have satisfied this requirement,
then it should be true that the solution is secure.

To that point, Microsoft’s solution is secure, but only if all of the images loaded
in the address space have been compiled with /SAFESEH. Even then, it’s possible
that it may not be completely secure1. If there are any images that have not
been compiled with /SAFESEH, it may be possible for an attacker to overwrite the
Handler with an address of an instruction that resides within an unprotected
image. The reason Microsoft’s implementation cannot protect against this is
because SafeSEH works by having the exception dispatcher validate handlers
against a table of image-specific safe exception handlers prior to calling an ex-
ception handler. Safe exception handlers are stored in a table that is contained
in any executable compiled with /SAFESEH. Given this limitation, it can also be
said that Microsoft’s implementation is not secure given the appropriate condi-
tions. In fact, for third-party applications, and even some Microsoft-provided
applications, these conditions are considered by the author to be the norm rather
than the exception. In the end, it all boils down to the fact that Microsoft’s
solution is a compile-time solution rather than a runtime solution. With these
limitations in mind, it makes sense to attempt to approach the problem from
the angle of a runtime solution rather than a compile-time solution.

When it comes to designing a runtime solution, the important consideration that
has to be made is that it will be necessary to intercept exceptions before they

1For example, it should be possible to overwrite the Handler with the address of some
non-image associated executable region, if one can be found
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are passed off to the registered exception handlers by the exception dispatcher.
The particulars of how this can be accomplished will be discussed in chapter 4.
Assuming a solution is found to the layering problem, the next step is to come
up with a solution for determining whether or not an exception handler is valid
and has not been tampered with. While there are many inefficient solutions
to this problem, such as coming up with a solution to keep a “secure” list of
registered exception handlers, there is one solution in particular that the author
feels is bested suited for the problem.

One of the side effects of an SEH overwrite is that the attacker will typically
clobber the value of the Next attribute associated with the exception registra-
tion record that is overwritten. This occurs because the Next attribute precedes
the Handler attribute in memory, and therefore must be overwritten before the
Handler in the case of a typical buffer overflow. This has a very important side
effect that is the key to facilitating the implementation of a runtime solution. In
particular, the clobbering of the Next attribute means that all subsequent ex-
ception registration records would not be reachable by the exception dispatcher
when walking the chain.

Consider for the moment a solution that, during thread startup, places a custom
exception registration record as the very last exception registration record in the
chain. This exception registration record will be symbolically referred to as the
validation frame henceforth. From that point forward, whenever an exception
is about to be dispatched, the solution could walk the chain prior to allowing
the exception dispatcher to handle the exception. The purpose of walking the
chain before hand is to ensure that the validation frame can be reached. As
such, the validation frame’s purpose is similar to that of stack canaries[5]. If
the validation frame can be reached, then that is evidence of the fact that the
chain of exception handlers has not been corrupted. As described above, the
act of overwriting the Handler attribute also requires that the Next pointer be
overwritten. If the Next pointer is not overwritten with an address that ensures
the integrity of the exception handler chain, then this solution can immediately
detect that the integrity of the chain is in question and prevent the exception
dispatcher from calling the overwritten Handler. Figure 3.1 illustrates how this
might look at execution time.

Using this technique, the act of ensuring that the integrity of the exception
handler chain is kept intact results in the ability to prevent SEH overwrites.
The important questions to ask at this point center around what limitations
this solution might have. The most obvious question to ask is what’s to stop
an attacker from simply overwriting the Next pointer with the value that was
already there. There are a few things that stop this. First of all, it will be com-
mon that the attacker does not know the value of the Next pointer. Second, and
perhaps most important, is that one of the benefits of using an SEH overwrite
is that an attacker can make use of a pop/pop/ret sequence. By forcing an
attacker to retain the value of the Next pointer, the major benefit of using an
SEH overwrite in the first place is gone. Even conceding this point, an attacker
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Figure 3.1: Detecting corruption of the exception handler chain

who is able to retain the value of the Next pointer would find themselves lim-
ited to overwriting the Handler with the address of instructions that indirectly
transfer control back to their code. However, the attacker won’t simply be able
to use an instruction like jmp esp because the Handler will be called in the
context of the exception dispatcher. It’s at this point that diminishing returns
are reached and an attacker is better off simply overwriting the return address,
if possible.

Another important question to ask is what’s to stop the attacker from overwrit-
ing the Next pointer with the address of the validation frame itself or, more
easily, with 0xffffffff. The answer to this is much the same as described
in the above paragraph. Specifically, by forcing an attacker away from the
pop/pop/ret sequence, the usefulness of the SEH overwrite vector quickly de-
grades to the point of it being better to simply overwrite the return address, if
possible. However, in order to be sure, the author feels that implementations of
this solution would be wise to randomize the location of the validation frame.

It is the author’s opinion that the solution described above satisfies the require-
ment outlined in the beginning of this chapter and therefore qualifies as a secure
solution. However, there’s always a chance that something has been missed. For
that reason, the author is more than happy to be proven wrong on this point.
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Chapter 4

Implementation

The implementation of the solution described in the previous chapter relies
on intercepting exceptions prior to allowing the native exception dispatcher to
handle them such that the exception handler chain can be validated. First and
foremost, it is important to identify a way of layering prior to the point that
the exception dispatcher transfers control to the registered exception handlers.
There are a few different places that this layering could occur at, but the one that
is best suited to catch the majority of user-mode exceptions is at the location
that ntdll!KiUserExceptionDispatcher gains control. However, by hooking
ntdll!KiUserExceptionDispatcher, it is possible that this implementation
may not be able to intercept all cases of an exception being raised, thus making
it potentially feasible to bypass the exception handler chain validation.

The best location would be to layer at would be ntdll!RtlDispatchException.
The reason for this is that exceptions raised through ntdll!RtlRaiseException,
such as software exceptions, may be passed directly to ntdll!RtlDispatchException
rather than going through ntdll!KiUserExceptionDispatcher first. The con-
dition that controls this is whether or not a debugger is attached to the user-
mode process when ntdll!RtlRaiseException is called. The reason ntdll!RtlDispatchException
is not hooked in this implementation is because it is not directly exported. There
are, however, fairly reliable techniques that could be used to determine its ad-
dress. As far as the author is aware, the act of hooking ntdll!KiUserExceptionDispatcher
should mean that it’s only possible to miss software exceptions which are much
harder, and in most cases impossible, for an attacker to generate.

In order to layer at ntdll!KiUserExceptionDispatcher, the first few instruc-
tions of its prologue can be overwritten with an indirect jump to a function that
will be responsible for performing any sanity checks necessary. Once the function
has completed its sanity checks, it can transfer control back to the original ex-
ception dispatcher by executing the overwritten instructions and then jumping
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back into ntdll!KiUserExceptionDispatcher at the offset of the next instruc-
tion to be executed. This is a nice and “clean” way of accomplishing this and
the performance overhead is miniscule1.

In order to hook ntdll!KiUserExceptionDispatcher, the first n instructions,
where n is the number of instructions that it takes to cover at least 6 bytes,
must be copied to a location that will be used by the hook to execute the actual
ntdll!KiUserExceptionDispatcher. Following that, the first n instructions of
ntdll!KiUserExceptionDispatcher can then be overwritten with an indirect
jump. This indirect jump will be used to transfer control to the function that
will validate the exception handler chain prior to allowing the original exception
dispatcher to handle the exception.

With the hook installed, the next step is to implement the function that will
actually validate the exception handler chain. The basic steps involved in this
are to first extract the head of the list from fs:[0] and then iterate over each
entry in the list. For each entry, the function should validate that the Next
attribute points to a valid memory location. If it does not, then the chain can
be assumed to be corrupt. However, if it does point to valid memory, then the
routine should check to see if the Next pointer is equal to the address of the
validation frame that was previously stored at the end of the exception handler
chain for this thread. If it is equal to the validation frame, then the integrity of
the chain is confirmed and the exception can be passed to the actual exception
dispatcher.

However, if the function reaches an invalid Next pointer, or it reaches 0xffffffff
without encountering the validation frame, then it can assume that the exception
handler chain is corrupt. It’s at this point that the function can take whatever
steps are necessary to discard the exception, log that a potential exploitation
attempt occurred, and so on. The end result should be the termination of ei-
ther the thread or the process, depending on circumstances. This algorithm is
captured by the pseudo-code below:

01: CurrentRecord = fs:[0];

02: ChainCorrupt = TRUE;

03: while (CurrentRecord != 0xffffffff) {

04: if (IsInvalidAddress(CurrentRecord->Next))

05: break;

06: if (CurrentRecord->Next == ValidationFrame) {

07: ChainCorrupt = FALSE;

08: break;

09: }

10: CurrentRecord = CurrentRecord->Next;

11: }

12: if (ChainCorrupt == TRUE)

13: ReportExploitationAttempt();

14: else

15: CallOriginalKiUserExceptionDispatcher();

1Where “clean” is defined as the best it can get from a third-party perspective

15



The above algorithm describes how the exception dispatching path should be
handled. However, there is one important part remaining in order to implement
this solution. Specifically, there must be some way of registering the validation
frame with a thread prior to any exceptions being dispatched on that thread.
There are a few ways that this can be accomplished. In terms of a proof of
concept, the easiest way of doing this is to implement a DLL that, when loaded
into a process’ address space, catches the creation notification of new threads
through a mechanism like DllMain or through the use of a TLS callback in the
case of a statically linked library. Both of these approaches provide a location
for the solution to establish the validation frame with the thread early on in its
execution. However, if there were ever a case where the thread were to raise an
exception prior to one of these routines being called, then the solution would
improperly detect that the exception handler chain was corrupt.

One solution to this potential problem is to store state relative to each thread
that keeps track of whether or not the validation frame has been registered.
There are certain implications about doing this, however. First, it could in-
troduce a security problem in that an attacker might be able to bypass the
protection by somehow toggling the flag that tracks whether or not the vali-
dation frame has been registered. If this flag were to be toggled to no and an
exception were generated in the thread, then the solution would have to assume
that it can’t validate the chain because no validation frame has been installed.
Another issue with this is that it would require some location to store this state
on a per-thread basis. A good example of a place to store this is in TLS, but
again, it has the security implications described above.

A more invasive solution to the problem of registering the validation frame
would be to somehow layer very early on in the thread’s execution – perhaps
even before it begins executing from its entry point. The author is aware of a
good way to accomplish this, but it will be left as an exercise to the reader on
what this might be. This more invasive solution is something that would be an
easy and elegant way for Microsoft to include support for this, should they ever
choose to do so.

The final matter of how to go about implementing this solution centers around
how it could be deployed and used with existing applications without requiring
a recompile. The easiest way to do this in a proof of concept setting would
be to implement these protection mechanisms in the form of a DLL that can
be dynamically loaded into the address space of a process that is to be pro-
tected. Once loaded, the DLL’s DllMain can take care of getting everything
set up. A simple way to cause the DLL to be loaded is through the use of
AppInit DLLs[4], although this has some limitations. Alternatively, there are
more invasive options that can be considered that will accomplish the goal of
loading and initializing the DLL early on in process creation.

One interesting thing about this approach is that while it is targeted at being
used as a runtime solution, it can also be used as a compile-time solution.
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This means that applications can use this solution at compile-time to protect
themselves from SEH overwrites. Unlike Microsoft’s solution, this will even
protect them in the presence of third-party images that have not been compiled
with the support. This can be accomplished through the use of a static library
that uses TLS callbacks to receive notifications when threads are created, much
like DllMain is used for DLL implementations of this solution.

All things considered, the author believes that the implementation described
above, for all intents and purposes, is a fairly simplistic way of providing run-
time protection against SEH overwrites that has minimal overhead. While the
implementation described in this document is considered more suitable for a
proof-of-concept or application-specific solution, there are real-world examples
of more robust implementations, such as in Wehnus’s WehnTrust product[9], a
commercial side-project of the author’s2.

2Apologies for the shameless plug
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Chapter 5

Compatibility

Like most security solutions, there are always compatibility problems that must
be considered. As it relates to the solution described in this paper, there are a
couple of important things to keep in mind.

The first compatibility issue that might happen in the real world is a scenario
where an application invalidates the exception handler chain in a legitimate
fashion. The author is not currently aware of situations where an application
would legitimately need to do this, but it has been observed that some appli-
cations, such as cygwin, will do funny things with the exception handler chain
that are not likely to play nice with this form of protection. In the event that
an application invalidates the exception handler chain, the solution described in
this paper may inadvertently detect that an SEH overwrite has occurred simply
because it is no longer able to reach the validation frame.

Another compatibility issue that may occur centers around the fact that the
implementation described in this paper relies on the hooking of functions. In
almost every situation it is a bad idea to use function hooking, but there are
often situations where there is no alternative, especially in closed source en-
vironments. The use of function hooking can lead to compatibility problems
with other applications that also hook ntdll!KiUserExceptionDispatcher.
There may also be instances of security products that detect the hooking of
ntdll!KiUserExceptionDispatcher and classify it as malware-like behavior.
In any case, these compatibility concerns center less around the fundamental
concept and more around the specific implementation that would be required
of a third-party.
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Chapter 6

Conclusion

Software-based vulnerabilities are a common problem that affect a wide array
of operating systems. In some cases, these vulnerabilities can be exploited with
greater ease depending on operating system specific features. One particular
case of where this is possible is through the use of an SEH overwrite on 32-bit
applications on the Windows platform. An SEH overwrite involves overwriting
the Handler associated with an exception registration record. Once this occurs,
an exception is generated that results in the overwritten Handler being called.
As a result of this, the attacker can more easily gain control of code execution
due to the context that the exception handler is called in.

Microsoft has attempted to address the problem of SEH overwrites with en-
hancements to the exception dispatcher itself and with solutions like SafeSEH
and the /GS compiler flag. However, these solutions are limited because they
require a recompilation of code and therefore only protect images that have been
compiled with these flags enabled. This limitation is something that Microsoft is
aware of and it was most likely chosen to reduce the potential for compatibility
issues.

To help solve the problem of not offering complete protection against SEH over-
writes, this paper has suggested a solution that can be used without any code
recompilation and with negligible performance overhead. The solution involves
appending a custom exception registration record, known as a validation frame,
to the end of the exception list early on in thread startup. When an exception
occurs in the context of a thread, the solution intercepts the exception and val-
idates the exception handler chain for the thread by making sure that it can
walk the chain until it reaches the validation frame. If it is able to reach the
validation frame, then the exception is dispatched like normal. However, if the
validation frame cannot be reached, then it is assumed that the exception han-
dler chain is corrupt and that it’s possible that an exploit attempt may have
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occurred. Since exception registration records are always prepended to the ex-
ception handler chain, the validation frame is guaranteed to always be the last
handler.

This solution relies on the fact that when an SEH overwrite occurs, the Next
attribute is overwritten before overwriting the Handler attribute. Due to the
fact that attackers typically use the Next attribute as the location at which to
store a short jump, it is not possible for them to both retain the integrity of the
list and also use it as a location to store code. This important consequence is
the key to being able to detect and prevent the leveraging of an SEH overwrite
to gain code execution.

Looking toward the future, the usefulness of this solution will begin to wane as
64-bit versions of Windows begin to dominate the desktop environment. The
reason 64-bit versions are not affected by this solution is because exception
handling on 64-bit versions of Windows is inherently secure due to the way it’s
been implemented[8]. However, this only applies to 64-bit binaries. Legacy
32-bit binaries that are capable of running on 64-bit versions of Windows will
continue to use the old style of exception handling, thus potentially leaving them
vulnerable to the same style of attacks depending on what compiler flags were
used. On the other hand, this solution will also become less necessary due to the
fact that modern 32-bit x86 machines support hardware NX and can therefore
help to mitigate the execution of code from the stack. Regardless of these facts,
there will always be a legacy need to protect against SEH overwrites, and the
solution described in this paper is one method of providing that protection.
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