
Memalyze: Dynamic Analysis of Memory Access
Behavior in Software

4/2007

skape
mmiller@hick.org



Abstract

This paper describes strategies for dynamically an-
alyzing an application’s memory access behavior.
These strategies make it possible to detect when a
read or write is about to occur at a given location
in memory while an application is executing. An ap-
plication’s memory access behavior can provide ad-
ditional insight into its behavior. For example, it
may be able to provide an idea of how data propa-
gates throughout the address space. Three individ-
ual strategies which can be used to intercept memory
accesses are described in this paper. Each strategy
makes use of a unique method of intercepting mem-
ory accesses. These methods include the use of Dy-
namic Binary Instrumentation (DBI), x86 hardware
paging features, and x86 segmentation features. A
detailed description of the design and implementa-
tion of these strategies for 32-bit versions of Windows
is given. Potential uses for these analysis techniques
are described in detail.

1 Introduction

If software analysis had a holy grail, it would more
than likely be centered around the ability to accu-
rately model the data flow behavior of an applica-
tion. After all, applications aren’t really much more
than sophisticated data processors that operate on
varying sets of input to produce varying sets of out-
put. Describing how an application behaves when it
encounters these varying sets of input makes it pos-
sible to predict future behavior. Furthermore, it can
provide insight into how the input could be altered
to cause the application to behave differently. Given
these benefits, it’s only natural that a discipline exists
that is devoted to the study of data flow analysis.

There are a two general approaches that can be taken
to perform data flow analysis. The first approach is
referred to as static analysis and it involves analyz-
ing an application’s source code or compiled bina-
ries without actually executing the application. The

second approach is dynamic analysis which, as one
would expect, involves analyzing the data flow of an
application as it executes. The two approaches both
have common and unique benefits and no argument
will be made in this paper as to which may be better
or worse. Instead, this paper will focus on describ-
ing three strategies that may be used to assist in the
process of dynamic data flow analysis.

The first strategy involves using Dynamic Binary
Instrumentation (DBI) to rewrite the instruction
stream of the executing application in a manner that
makes it possible to intercept instructions that read
from or write to memory. Two well-known examples
of DBI implementations that the author is familiar
with are DynamoRIO and Valgrind[4, 12]. The sec-
ond strategy that will be discussed involves using the
hardware paging features of the x86 and x64 archi-
tectures to trap and handle access to specific pages
in memory. Finally, the third strategy makes use of
the segmentation features included in the x86 archi-
tecture to trap memory accesses by making use of
the null selector. Though these three strategies vary
greatly, they all accomplish the same goal of being
able to intercept memory accesses within an applica-
tion as it executes.

The ability to intercept memory reads and writes dur-
ing runtime can support research in additional areas
relating to dynamic data flow analysis. For example,
the ability to track what areas of code are reading
from and writing to memory could make it possible to
build a model for the data propagation behaviors of
an application. Furthermore, it might be possible to
show with what degree of code-level isolation different
areas of memory are accessed. Indeed, it may also be
possible to attempt to validate the data consistency
model of a threaded application by investigating the
access behaviors of various regions of memory which
are referenced by multiple threads. These are but
a few of the many potential candidates for dynamic
data flow analysis.

This paper is organized into three sections. Section
2 gives an introduction to three different strategies
for facilitating dynamic data flow analysis. Section 3
enumerates some of the potential scenarios in which

1



these strategies could be applied in order to render
some useful information about the data flow behavior
of an application. Finally, section 4 describes some
of the previous work whose concepts have been used
as the basis for the research described herein.

2 Strategies

This section describes three strategies that can be
used to intercept runtime memory accesses. The
strategies described herein do not rely on any static
binary analysis. Techniques that do make use of
static binary analysis are outside of the scope of this
paper.

2.1 Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI) is a method
of analyzing the behavior of a binary application
at runtime through the injection of instrumentation
code. This instrumentation code executes as part of
the normal instruction stream after being injected. In
most cases, the instrumentation code will be entirely
transparent to the application that it’s been injected
to. Analyzing an application at runtime makes it
possible to gain insight into the behavior and state
of an application at various points in execution. This
highlights one of the key differences between static
binary analysis and dynamic binary analysis. Rather
than considering what may occur, dynamic binary
analysis has the benefit of operating on what actu-
ally does occur. This is by no means exhaustive in
terms of exercising all code paths in the application,
but it makes up for this by providing detailed insight
into an application’s concrete execution state.

The benefits of DBI have made it possible to develop
some incredibly advanced tools. Examples where
DBI might be used include runtime profiling, visu-
alization, and optimization tools. DBI implementa-
tions generally fall into two categories: light-weight
or heavy-weight. A light-weight DBI operates on
the architecture-specific instruction stream and state

when performing analysis. A heavy-weight DBI op-
erates on an abstract form of the instruction stream
and state. An example a heavy-weight DBI is Val-
grind which performs analysis on an intermediate rep-
resentation of the machine state[12, 8]. An example
of a light-weight DBI is DynamoRIO which performs
analysis using the architecture-specific state[4]. The
benefit of a heavy-weight DBI over a light-weight DBI
is that analysis code written against the intermedi-
ate representation is immediately portable to other
architectures, whereas light-weight DBI analysis im-
plementations must be fine-tuned to work with indi-
vidual architectures. While Valgrind is a novel and
interesting implementation, it is currently not sup-
ported on Windows. For this reason, attention will
be given to DynamoRIO for the remainder of this
paper1.

DynamoRIO is an example of a DBI framework that
allows custom instrumentation code to be integrated
in the form of dynamic libraries. The tool itself is
a combination of Dynamo, a dynamic optimization
engine developed by researchers at HP, and RIO, a
runtime introspection and optimization engine devel-
oped by MIT. The fine-grained details of the imple-
mentation of DynamoRIO are outside of the scope
of this paper, but it’s important to understand the
basic concepts[3].

At a high-level, figure 1 from Transparent Binary Op-
timization provides a great visualization of the pro-
cess employed by Dynamo[3]. In concrete terms, Dy-
namo works by processing an instruction stream as
it executes. To accomplish this, Dynamo assumes
responsibility for the execution of the instruction
stream. It uses a disassembler to identify the point of
the next branch instruction in the code that is about
to be executed. The set of instructions disassembled
is referred to as a fragment (although, it’s more com-
monly known as a basic block). If the target of the
branch instruction is in Dynamo’s fragment cache,
it executes the (potentially optimized) code in the

1There are many additional DBI frameworks and details,
but for the sake of limiting scope these will not be discussed.
The reader should consult reference material to learn more
about this subject[12]

2



fragment cache. When this code completes, it returns
control to Dynamo to disassemble the next fragment.
If at some point Dynamo encounters a branch target
that is not in its fragment cache, it will add it to the
fragment cache and potentially optimize it. This is
the perfect opportunity for instrumentation code to
be injected into the optimized fragment that is gen-
erated for a branch target. Injecting instrumentation
code at this level is entirely transparent to the ap-
plication. While this is an oversimplification of the
process used by DynamoRIO, it should at least give
some insight into how it functions.

One of the best features of DynamoRIO from an anal-
ysis standpoint is that it provides a framework for
inserting instrumentation code during the time that
a fragment is being inserted into the fragment cache.
This is especially useful for the purposes of intercept-
ing memory accesses within an application. When
a fragment is being created, DynamoRIO provides
analysis libraries with the instructions that are to be
included in the fragment that is generated. To opti-
mize for performance, DynamoRIO provides multiple
levels of disassembly information. At the most op-
timized level, only very basic information about the
instructions is provided. At the least optimized level,
very detailed information about the instructions and
their operands can be obtained. Analysis libraries
are free to control the level of information that they
retrieve. Using this knowledge of DynamoRIO, it
is now possible to consider how one might design
an analysis library that is able to intercept memory
reads and writes while an application is executing.

2.1.1 Design

DBI, and DynamoRIO in particular, make design-
ing a solution that can intercept memory reads and
writes fairly trivial. The basic design involves having
an analysis library that scans the instructions within
a fragment that is being created. When an instruc-
tion that accesses memory is encountered, instrumen-
tation code can be inserted prior to the instruction.
The instrumentation code can be composed of in-
structions that notify an instrumentation function of

the memory operand that is about to be read from or
written to. This has the effect of causing the instru-
mentation function to be called when the fragment
is executed. These few steps are really all that it
takes instrument the memory access behavior of an
application as it executes using DynamoRIO.

2.1.2 Implementation

The implementation of the DBI approach is re-
ally just as easy as the design description makes it
sound. To cooperate with DynamoRIO, an anal-
ysis library must implement a well-defined routine
named dynamorio basic block which is called by
DynamoRIO when a fragment is being created. This
routine is passed an instruction list which contains
the set of instructions taken from the native binary.
Using this instruction list, the analysis library can
make a determination as to whether or not any of the
operands of an instruction either explicitly or implic-
itly reference memory. If an instruction does access
memory, then instrumentation code must be inserted.

Inserting instrumentation code with DynamoRIO is
a pretty painless process. DynamoRIO provides a
number of macros that encapsulate the process of
creating and inserting instructions into the instruc-
tion list. For example, INSTR CREATE add will cre-
ate an add instruction with a specific set of argu-
ments and instrlist meta preinsert will insert an
instruction prior to another instruction within the in-
struction list.

A proof of concept implementation is included with
the source code provided along with this paper.

2.1.3 Considerations

This approach is particularly elegant thanks to the
concepts of dynamic binary instrumentation and to
DynamoRIO itself for providing an elegant frame-
work that supports inserting instrumentation code
into the fragment cache. Since DynamoRIO is explic-
itly designed to be a runtime optimization engine, the

3



fact that the instrumentation code is cached within
the fragment cache means that it gains the benefits
of DynamoRIO’s fragment optimization algorithms.
When compared to alternative approaches, this ap-
proach also has significantly less overhead once the
fragment cache begins to become populated. This is
because all of the instrumentation code is placed en-
tirely inline with the application code that is execut-
ing rather than having to rely on alternative means of
interrupting the normal course of program execution.
Still, this approach is not without its set of consid-
erations. Some of these considerations are described
below:

1. Requires the use of a disassembler
DynamoRIO depends on its own internal disas-
sembler. This can be a source of problems and
limitations.

2. Self-modifying and dynamic code
Self-modifying and dynamically generated code
can potentially cause problems with Dy-
namoRIO.

3. DynamoRIO is closed source
While this has nothing to do with the actual con-
cept, the fact that DynamoRIO is closed source
can be limiting in the event that there are issues
with DynamoRIO itself.

2.2 Page Access Interception

The hardware paging features of the x86 and x64
architectures represent a potentially useful means
of obtaining information about the memory access
behavior of an application. This is especially true
due to the well-defined actions that the processor
takes when a reference is made to a linear address
whose physical page is either not present or has
had its access restricted. In these cases, the pro-
cessor will assert the page fault interrupt (0x0E)
and thereby force the operating system to attempt
to gracefully handle the virtual memory reference.
In Windows, the page fault interrupt is handled by

nt!KiTrap0E. In most cases, nt!KiTrap0E will is-
sue a call into nt!MmAccessFault which is respon-
sible for making a determination about the nature of
the memory reference that occurred. If the memory
reference fault was a result of an access restriction,
nt!MmAccessFault will return an access violation er-
ror code (0xC0000005). When an access violation
occurs, an exception record is generated by the ker-
nel and is then passed to either the user-mode ex-
ception dispatcher or the kernel-mode exception dis-
patcher depending on which mode the memory access
occurred in. The job of the exception dispatcher is
to give a thread an opportunity to gracefully recover
from the exception. This is accomplished by pro-
viding each of the registered or vectored exception
handlers with the exception information that was col-
lected when the page fault occurred. If an exception
handler is able to recover, execution of the thread can
simply restart where it left off. Using the principles
outlined above, it is possible to design a system that
is capable of both trapping and handling memory ref-
erences to specific pages in memory during the course
of normal process execution.

2.2.1 Design

The first step that must be taken to implement this
system involves identifying a method that can be
used to trap references to arbitrary pages in mem-
ory. Fortunately, previous work has done much to
identify some of the different approaches that can be
taken to accomplish this[9, 5]. For the purposes of
this paper, one of the most useful approaches centers
around the ability to define whether or not a page is
restricted from user-mode access. This is controlled
by the Owner bit in a linear address’ page table entry
(PTE)[6]. When the Owner bit is set to 0, the page
can only be accessed at privilege level 0. This effec-
tively restricts access to kernel-mode in all modern
operating systems. Likewise, when the Owner bit is
set to 1, the page can be accessed from all privilege
levels. By toggling the Owner bit to 0 in the PTEs
associated with a given set of linear addresses, it is
possible to trap all user-mode references to those ad-
dresses at runtime. This effectively solves the first

4



hurdle in implementing a solution to intercept mem-
ory access behavior.

Using the approach outlined above, any reference
that is made from user-mode to a linear address
whose PTE has had the Owner bit set to 0 will re-
sult in an access violation exception being passed to
the user-mode exception dispatcher. This exception
must be handled by a custom exception handler that
is able to distinguish transient access violations from
ones that occurred as a result of the Owner bit having
been modified. This custom exception handler must
also be able to recover from the exception in a manner
that allows execution to resume seamlessly. Distin-
guishing exceptions is easy if one assumes that the
custom exception handler has knowledge in advance
of the address regions that have had their Owner bit
modified. Given this assumption, the act of distin-
guishing exceptions is as simple as seeing if the fault
address is within an address region that is currently
being monitored. While distinguishing exceptions
may be easy, being able to gracefully recovery is an
entirely different matter.

To recover and resume execution with no noticeable
impact to an application means that the exception
handler must have a mechanism that allows the ap-
plication to access the data stored in the pages whose
virtual mappings have had their access restricted to
kernel-mode. This, of course, would imply that the
application must have some way, either direct or in-
direct, to access the contents of the physical pages
associated with the virtual mappings that have had
their PTEs modified. The most obvious approach
would be to simply toggle the Owner bit to permit
user-mode access. This has many different problems,
not the least of which being that doing so would be
expensive and would not behave properly in multi-
threaded environments (memory accesses could be
missed or worse). An alternative to updating the
Owner bit would be to have a device driver designed to
provide support to processes that would allow them
to read the contents of a virtual address at privilege
level 0. However, having the ability to read and write
memory through a driver means nothing if the results
of the operation cannot be factored back into the in-

struction that triggered the exception.

Rather than attempting to emulate the read and
write access, a better approach can be used. This
approach involves creating a second virtual mapping
to the same set of physical pages described by the
linear addresses whose PTEs were modified. This
second virtual mapping would behave like a typical
user-mode memory mapping. In this way, the pro-
cess’ virtual address space would contain two virtual
mappings to the same set of physical pages. One
mapping, which will be referred to as the original
mapping, would represent the user-mode inaccessible
set of virtual addresses. The second mapping, which
will be referred to as the mirrored mapping, would
be the user-mode accessible set of virtual addresses.
By mapping the same set of physical pages at two
locations, it is possible to transparently redirect ad-
dress references at the time that exceptions occur.
An important thing to note is that in order to pro-
vide support for mirroring, a disassembler must be
used to figure out which registers need to be modi-
fied.

To better understand how this could work, consider a
scenario where an application contains a mov [eax],
0x1 instruction. For the purposes of this example, as-
sume that the eax register contains an address that
is within the original mapping as described above.
When this instruction executes, it will lead to an ac-
cess violation exception being generated as a result
of the PTE modifications that were made to the orig-
inal mapping. When the exception handler inspects
this exception, it can determine that the fault address
was one that is contained within the original map-
ping. To allow execution to resume, the exception
handler must update the eax register to point to the
equivalent address within the mirrored region. Once
it has altered the value of eax, the exception han-
dler can tell the exception dispatcher to continue ex-
ecution with the now-modified register information.
From the perspective of an executing application, this
entire operation will occur transparently. Unfortu-
nately, there’s still more work that needs to be done
in order to ensure that the application continues to
execute properly after the exception dispatcher con-

5



tinues execution.

The biggest problem with modifying the value of a
register to point to the mirrored address is that it
can unintentionally alter the behavior of subsequent
instructions. For example, the application may not
function properly if it assumes that it can access other
non-mirrored memory addresses relative to the ad-
dress stored within eax. Not only that, but allowing
eax to continue to be accessed through the mirrored
address will mean that subsequent reads and writes
to memory made using the eax register will be missed
for the time that eax contains the mirrored address.

In order to solve this problem, it is necessary to
come up with a method of restoring registers to their
original value after the instruction executes. Fortu-
nately, the underlying architecture has built-in sup-
port that allows a program to be notified after it has
executed an instruction. This support is known as
single-stepping. To make use of single-stepping, the
exception handler can set the trap flag (0x100) in
the saved value of the eflags register. When exe-
cution resumes, the processor will generate a single
step exception after the original instruction executes.
This will result in the custom exception handler be-
ing called. When this occurs, the custom exception
handler can determine if the single step exception
occurred as a result of a previous mirroring opera-
tion. If it was the result of a mirroring operation,
the exception handler can take steps to restore the
appropriate register to its original value.

Using these four primary steps, a complete solution
to the problem of intercepting memory accesses can
be formed. First, the Owner bit of the PTEs associ-
ated with a region of virtual memory can be set to
0. This will cause user-mode references to this region
to generate an access violation exception. Second,
an additional mapping to the set of physical pages
described the original mapping can be created which
is accessible from user-mode. Third, any access vi-
olation exceptions that reach the custom exception
handler can be inspected. If they are the result of a
reference to a region that is being tracked, the regis-
ter contents of the thread context can be adjusted to
reference the user-accessible mirrored mapping. The

thread can then be single-stepped so that the fourth
and final step can be taken. When a single-step ex-
ception is generated, the custom exception handler
can restore the original value of the register that was
modified. When this is complete, the thread can be
allowed to continue as if nothing had happened.

2.2.2 Implementation

An implementation of this approach is included with
the source code released along with this paper. This
implementation has two main components: a kernel-
mode driver and a user-mode DLL. The kernel-mode
driver provides a device object interface that allows
a user-mode process to create a mirrored mapping of
a set of physical pages and to toggle the Owner bit
of PTEs associated with address regions. The user-
mode DLL is responsible for implementing a vectored
exception handler that takes care of processing access
violation exceptions by mirroring the address refer-
ences to the appropriate mirrored region. The user-
mode DLL also exposes an API that allows applica-
tions to create a memory mirror. This abstracts the
entire process and makes it simple to begin tracking
a specific memory region. The API also allows appli-
cations to register callbacks that are notified when an
address reference occurs. This allows further analysis
of the memory access behavior of the application.

2.2.3 Considerations

While this approach is most definitely functional,
it comes with a number of caveats that make it
sub-optimal for any sort of large-scale deployment.
The following considerations are by no means all-
encompassing, but some of the more important ones
have been enumerated below:

1. Unsafe modification of PTEs
It is not safe to modify PTEs without acquiring
certain locks. Unfortunately, these locks are not
exported and are therefore inaccessible to third
party drivers.

6



2. Large amount of overhead
The overhead associated with having to take a
page fault and pass the exception on to the be
handled by user-mode is substantial. Memory
access time with respect to the application could
jump from nanoseconds to micro or even milli
seconds.

3. Requires the use of a disassembler
Since this approach relies on mirroring memory
references from one virtual address to another, a
disassembler has to be used to figure out which
registers need to be modified with the mirrored
address. Any time a disassembler is needed is an
indication that things are getting fairly compli-
cated.

4. Cannot track memory references to all addresses
The fact that this approach relies on locking
physical pages prevents it from feasibly track-
ing all memory references. In addition, because
the thread stack is required to be valid in order
to dispatch exceptions, it’s not possible to track
reads and writes to thread stacks using this ap-
proach.

2.3 Null Segment Interception

Segmentation is an extremely old feature of the x86
architecture. Its purpose has been to provide soft-
ware with the ability to partition the address space
into distinct segments that can be referenced through
a 16-bit segment selector. Segment selectors are used
to index either the Global Descriptor Table (GDT)
or the Local Descriptor Table (LDT). Segment de-
scriptors convey information about all or a portion of
the address space. On modern 32-bit operating sys-
tems, segmentation is used to set up a flat memory
model (primarily only used because there is no way
to disable it). This is further illustrated by the fact
that the x64 architecture has effectively done away
with the ES, DS, and SS segment registers in 64-bit
mode[1]. While segment selectors are primarily in-
tended to make it possible to access memory, they
can also be used to prevent access to it.

2.3.1 Design

Segmentation is one of the easiest ways to trap mem-
ory accesses. The majority of instructions which ref-
erence memory implicitly use either the DS or ES seg-
ment registers to do so. The one exception to this
rule are instructions that deal with the stack. These
instructions implicitly use the SS segment register.
There are a few different ways one can go about caus-
ing a general protection fault when accessing an ad-
dress relative to a segment selector, but one of the
easiest is to take advantage of the null selector. The
null selector, 0x0, is a special segment selector that
will always cause a general protection fault when us-
ing it to reference memory. By loading the null se-
lector into DS, for example, the mov [eax], 0x1 in-
struction would cause a general protection fault when
executed. Using the null selector solves the problem
of being able to intercept memory accesses, but there
still needs to be some mechanism to allow the ap-
plication to execute normally after intercepting the
memory access.

When a general protection fault occurs in user-mode,
the kernel generates an access violation exception and
passes it off to the user-mode exception dispatcher in
much the same way as was described in 2.2. Regis-
tering a custom exception handler makes it possible
to catch this exception and handle it gracefully. To
handle this exception, the custom exception handler
must restore DS and ES segment registers to valid seg-
ment selectors by updating the thread context record
associated with the exception. On 32-bit versions of
Windows, the segment registers should be restored
to 0x23. Once the the segment registers have been
updated, the exception dispatcher can be told to con-
tinue execution. However, before this happens, there
is an additional step that must be taken.

It is not enough to simply restore the segment regis-
ters and then continue execution. This would lead to
subsequent reads and writes being missed as a result
of the DS and ES segment registers no longer point-
ing to the null selector. To address this, the custom
exception handler should toggle the trap flag in the
context record prior to continuing execution. Setting

7



the trap flag will cause the processor to generate a
single step exception after the instruction that gen-
erated the general protection fault executes. This
single step exception can then be processed by the
custom exception handler to reset the DS and ES seg-
ment registers to the null selector. After the segment
registers have been updated, the trap flag can be dis-
abled and execution can be allowed to continue. By
following these steps, the application is able to make
forward progress while also making it possible to trap
all memory reads and writes that use the DS and ES
segment registers.

2.3.2 Implementation

The implementation for this approach involves regis-
tering a vectored exception handler that is able to
handle the access violation and single step excep-
tions that are generated. Since this approach re-
lies on setting the segment registers DS and ES to
the null selector, an implementation must take steps
to update the segment register state for each run-
ning thread in a process and for all new threads
as they are created. Updating the segment register
state for running threads involves enumerating run-
ning threads in the calling process using the toolhelp
library. For each thread that is not the calling thread,
the SetThreadContext routine can be used to up-
date segment registers. The calling thread can up-
date the segment registers using native instructions.
To alter the segment registers for new threads, the
DLL THREAD ATTACH notification can be used. Once
all threads have had their DS and ES segment reg-
isters updated, memory references will immediately
begin causing access violation exceptions.

When these access violation exceptions are passed
to the vectored exception handler, appropriate steps
must be taken to restore the DS and ES segment regis-
ters to a valid segment selector, such as 0x23. This is
accomplished by updating the SegDs and SegEs seg-
ment registers in the CONTEXT structure that is passed
in association with an exception. In addition to up-
dating these segment registers, the trap flag (0x100)
must also be set in the EFlags register so that the DS

and ES segment registers can be restored to the null
selector in order to trap subsequent memory accesses.
Setting the trap flag will lead to a single step excep-
tion after the instruction that generated the access
violation executes. When the single step exception is
received, the SegDs and SegEs segment registers can
be restored to the null selector.

These few steps capture the majority of the imple-
mentation, but there is a specific Windows nuance
that must be handled in order for this to work right.
When the Windows kernel returns to a user-mode
process after a system call has completed, it restores
the DS and ES segment selectors to their normal value
of 0x23. The problem with this is that without some
way to reset the segment registers to the null selector
after a system call returns, there is no way to con-
tinue to track memory accesses after a system call.
Fortunately, there is a relatively painless way to reset
the segment registers after a system call returns. On
Windows XP SP2 and more recent versions of Win-
dows, the kernel determines where to transfer con-
trol to after a system call returns by looking at the
function pointer stored in the shared user data mem-
ory mapping. Specifically, the SystemCallReturn at-
tribute at 0x7ffe0304 holds a pointer to a location in
ntdll that typically contains just a ret instruction
as shown below:

0:001> u poi(0x7ffe0304)

ntdll!KiFastSystemCallRet:

7c90eb94 c3 ret

7c90eb95 8da42400000000 lea esp,[esp]

7c90eb9c 8d642400 lea esp,[esp]

Replacing this single ret instruction with code that
resets the DS and ES registers to the null selector
followed by a ret instruction is enough to make it
possible to continue to trap memory accesses after a
system call returns. However, this replacement code
should not take these steps if a system call occurs in
the context of the exception dispatcher, as this could
lead to a nesting issue if anything in the exception
dispatcher references memory, which is very likely.

An implementation of this approach is included with
the source code provided along with this paper.

8



2.3.3 Considerations

There are a few considerations that should be noted
about this approach. On the positive side, this ap-
proach is unique when compared to the others de-
scribed in this paper due to the fact that, in princi-
ple, it should be possible to use it to trap memory
accesses in kernel-mode, although it is expected that
the implementation may be much more complicated.
This approach is also much simpler than the other ap-
proaches in that it requires far less code. While these
are all good things, there are some negative consid-
erations that should also be pointed out. These are
enumerated below:

1. Will not work on x64
The segmentation approach described in this sec-
tion will not work on x64 due to the fact that
the DS, ES, and even SS segment selectors are ef-
fectively ignored when the processor is in 64-bit
mode[1].

2. Significant performance overhead
Like many of the other approaches, this one also
suffers from significant performance overhead in-
volved in having to take a general protection
and debug exception fault for every address ref-
erence. This approach could be be further op-
timized by creating a custom LDT entry (using
NtSetLdtEntries) that describes a region whose
base address is 0 and length is n where n is just
below the address of the region(s) that should
be monitored. This would have the effect of al-
lowing memory accesses to succeed within the
lower portion of the address space and fail in the
higher portion (which is being monitored). It’s
important to note that the base address of the
LDT entry must be zero. This is problematic
since most of the regions that one would like to
monitor (heap) are allocated low in the address
space. It would be possible to work around this
issue by having NtAllocateVirtualMemory al-
locate using MEM TOP DOWN.

3. Requires a disassembler
Unfortunately, this approach also requires the

use of a disassembler in order to extract the ef-
fective address that caused the access violation
exception to occur. This is necessary because
general protection faults that occur due to a seg-
ment selector issue generate exception records
that flag the fault address as being 0xffffffff.
This makes sense in the context that without a
valid segment selector, there is no way to accu-
rately calculate the effective address. The use of
a disassembler means that the code is inherently
more complicated than it would otherwise need
to be. There may be some way to craft a special
LDT entry that would still make it possible to
determine the address that cause the fault, but
the author has not investigated this.

3 Potential Uses

The ability to intercept an application’s memory ac-
cesses is an interesting concept but without much use
beyond simple statistical and visual analysis. Even
though this is the case, the data that can be collected
by analyzing memory access behavior can make it
possible to perform much more extensive forms of
dynamic binary analysis. This section will give a
brief introduction to some of the hypothetical areas
that might benefit from being able to understand the
memory access behavior of an application.

3.1 Data Propagation

Being able to gain knowledge about the way that data
propagates throughout an application can provide ex-
tremely useful insights. For example, understanding
data propagation can give security researchers an idea
of the areas of code that are affected, either directly
or indirectly, by a buffer that is received from a net-
work socket. In this context, having knowledge about
areas affected by data would be much more valuable
than simply understanding the code paths that are
taken as a result of the buffer being received. Though
the two may seem closely related, the areas of code
affected by a buffer that is received should actually

9



be restricted to a subset of the overall code paths
taken.

Even if understanding data propagation within an
application is beneficial, it may not be clear exactly
how analyzing memory access behavior could make
this possible. To understand how this might work,
it’s best to think of memory access in terms of its
two basic operations: read and write. In the course
of normal execution, any instruction that reads from
a location in memory can be said to be dependent
on the last instruction that wrote to that location.
When an instruction writes to a location in mem-
ory, it can be said that any instructions that orig-
inally wrote to that location no longer have claim
over it. Using these simple concepts, it is possible to
build a dependency graph that shows how areas of
code become dependent on one another in terms of
a reader/writer relationship. This dependency graph
would be dynamic and would change as a program ex-
ecutes just the same as the data propagation within
an application would change.

At this point in time, the author has developed a
very simple implementation based on the DBI strat-
egy outlined in this paper. The current implementa-
tion is in need of further refinement, but it is capable
of showing reader/writer relationships as the program
executes. This area is ripe for future research.

3.2 Memory Access Isolation

From a visualization standpoint, it might be interest-
ing to be able to show with what degrees of code-level
isolation different regions of memory are accessed.
For example, being able to show what areas of code
touch individual heap allocations could provide inter-
esting insight into the containment model of an appli-
cation that is being analyzed. This type of analysis
might be able to show how well designed the applica-
tion is by inferring code quality based on the average
number of areas of code that make direct reference
to unique heap allocations. Since this concept is a
bit abstract, it might make sense to discuss a more
concrete example.

One example might involve an object-oriented C++
application that contains multiple classes such as Cir-
cle, Shape, Triangle, and so on. In the first design,
the application allows classes to directly access the
attributes of instances. In the second design, the ap-
plication forces classes to reference attributes through
public getters and setters. Using memory access be-
havior to identify code-level isolation, the first design
might be seen as a poor design due to the fact that
there will be many code locations where unique heap
allocations (class instances) have the contents of their
memory accessed directly. The second design, on the
other hand, might be seen as a more robust design
due to the fact that the unique heap allocations would
be accessed by fewer places (the getters and setters).

It may actually be the case that there’s no way to
draw a meaningful conclusion by analyzing code-level
isolation of memory accesses. One specific case that
was raised to the author involved how the use of in-
lining or aggressive compiler optimizations might in-
correctly indicate a poor design. Even though this
is likely true, there may be some knowledge that can
be obtained by researching this further. The author
is not presently aware of an implementation of this
concept but would love to be made aware if one ex-
ists.

3.3 Thread Data Consistency

Programmers familiar with the pains of thread dead-
locks and thread-related memory corruption should
be well aware of how tedious these problems can be
to debug. By analyzing memory access behavior in
conjunction with some additional variables, it may be
possible to make determinations as to whether or not
a memory operation is being made in a thread safe
manner. At this point, the author has not defined a
formal approach that could be taken to achieve this,
but a few rough ideas have been identified.

The basic idea behind this approach would be to com-
bine memory access behavior with information about
the thread that the access occurred in and the set of
locks that were acquired when the memory access oc-

10



curred. Determining which locks are held can be as
simple as inserting instrumentation code into the rou-
tines that are used to acquire and release locks at run-
time. When a lock is acquired, it can be pushed onto
a thread-specific stack. When the lock is released,
it can be removed. The nice thing about represent-
ing locks as a stack is that in almost every situation,
locks should be acquired and released in symmetric
order. Acquiring and releasing locks asymmetrically
can quickly lead to deadlocks and therefore can be
flagged as problematic.

Determining data consistency is quite a bit trickier,
however. An analysis library would need some means
of historically tracking read and write access to dif-
ferent locations in memory. Still, determining what
might be a data consistency issue from this histori-
cal data is challenging. One example of a potential
data consistency issue might be if two writes occur
to a location in memory from separate threads with-
out a common lock being acquired between the two
threads. This isn’t guaranteed to be problematic,
but it is at the very least be indicative of a potential
problem. Indeed, it’s likely that many other types of
data consistency examples exist that may be possi-
ble to capture in relation to memory access, thread
context, and lock ownership.

Even if this concept can be made to work, the very
fact that it would be a runtime solution isn’t a great
thing. It may be the case that code paths that lead
to thread deadlocks or thread-related corruption are
only executed rarely and are hard to coax out. Re-
gardless, the author feels like this represents an in-
teresting area of future research.

4 Previous Work

The ideas described in this paper benefit greatly from
the concepts demonstrated in previous works. The
memory mirroring concept described in 2.2 draws
heavily from the PaX team’s work relating to their
VMA mirroring and software-based non-executable
page implementations[9]. Oded Horovitz provided an

implementation of the paging approach for Windows
and applied it to application security[5]. In addi-
tion, there have been other examples that use con-
cepts similar to those described by PaX to achieve
additional results, such as OllyBone, ShadowWalker,
and others[11, 10]. The use of DBI in 2.1 for mem-
ory analysis is facilitated by the excellent work that
has gone into DynamoRIO, Valgrind, and indeed all
other DBI frameworks[4, 12].

It should be noted that if one is strictly interested
in monitoring writes to a memory region, Windows
provides a built-in feature known as a write watch.
When allocating a region with VirtualAlloc, the
MEM WRITE WATCH flag can be set. This flag tells the
kernel to track writes that occur to the region. These
writes can be queried at a later point in time using
GetWriteWatch[7].

It is also possible to use guard pages and other forms
of page protection, such as PAGE NOACCESS, to in-
tercept memory access to a page in user-mode. Pe-
dram Amini’s PyDbg supports the concept of mem-
ory breakpoints which are implemented using guard
pages[2]. This type of approach has two limitations
that are worth noting. The first limitation involves
an inability to pass addresses to kernel-mode that
have had a memory breakpoint set on them (either
guard page or PAGE NOACCESS). If this occurs it can
lead to unexpected behavior, such as by causing a
system call to fail when referencing the user-mode
address. This would not trigger an exception in user-
mode. Instead, the system call would simply re-
turn STATUS ACCESS VIOLATION. As a result, an ap-
plication might crash or otherwise behave improperly.
The second limitation is that there may be conse-
quences in multi-threaded environments where mem-
ory accesses are missed.

5 Conclusion

The ability to analyze the memory access behavior
of an application at runtime can provide additional
insight into how an application works. This insight

11



might include learning more about how data prop-
agates, deducing the code-level isolation of memory
references, identifying potential thread safety issues,
and so on. This paper has described three strategies
that can be used to intercept memory accesses within
an application at runtime.

The first approach relies on Dynamic Binary Instruc-
tion (DBI) to inject instrumentation code before in-
structions that access memory locations. This in-
strumentation code is then capable of obtaining in-
formation about the address being referenced when
instructions are executed.

The second approach relies on hardware paging fea-
tures supported by the x86 and x64 architecture to
intercept memory accesses. This works by restrict-
ing access to a virtual address range to kernel-mode
access. When an application attempts to reference
a virtual address that has been marked as such, an
exception is generated that is then passed to the user-
mode exception dispatcher. A custom exception han-
dler can then inspect the exception and take the steps
necessary to allow execution to continue gracefully af-
ter having tracked the memory access.

The third approach uses the segmentation feature of
the x86 architecture to intercept memory accesses. It
does this by loading the DS and ES segment registers
with the null selector. This has the effect of caus-
ing instructions which implicitly use these registers to
generate a general protection fault when referencing
memory. This fault results in an access violation ex-
ception being generated that can be handled in much
the same way as the hardware paging approach.

It is hoped that these strategies might be useful to
future research which could benefit from collecting
memory access information.

References

[1] AMD. AMD64 Architecture Programmer’s
Manual: Volume 2 System Programming.
http://www.amd.com/us-en/assets/

content type/white papers and tech docs/
24593.pdf; accessed 5/2/2007.

[2] Amini, Pedram. PaiMei.
http://pedram.redhive.com/PaiMei/docs/;
accessed 5/10/2007.

[3] Bala, Duesterwald, Banerija. Transparent Dy-
namic Optimization.
http://www.hpl.hp.com/techreports/1999/
HPL-1999-77.pdf; accessed 5/2/2007.

[4] Hewlett-Packard, MIT. DynamoRIO.
http://www.cag.lcs.mit.edu/dynamorio/;
accessed 4/30/2007.

[5] Horovitz, Oded. Memory Access Detection.
http://cansecwest.com/core03/mad.zip; ac-
cessed 5/7/2007.

[6] Intel. Intel Architecture Software Developer’s
Manual Volume 3: System Programming.
http://download.intel.com/design/
PentiumII/manuals/24319202.pdf; accessed
5/1/2007.

[7] Microsoft Corporation. GetWriteWatch.
http://msdn2.microsoft.com/en-us/
library/aa366573.aspx; accessed 5/5/2007.

[8] Nethercote, Nicholas. Dynamic Binary Analysis
and Instrumentation.
http://valgrind.org/docs/phd2004.pdf; ac-
cessed 5/2/2007.

[9] PaX Team. PAGEEXEC.
http://pax.grsecurity.net/docs/
pageexec.txt; accessed 5/1/2007.

[10] Sparks, Butler. Shadow Walker: Raising the
Bar for Rootkit Detection.
https://www.blackhat.com/presentations/
bh-jp-05/bh-jp-05-sparks-butler.pdf;
accessed 5/3/2007.

[11] Stewart, Joe. Ollybone.
http://www.joestewart.org/ollybone/; ac-
cessed 5/3/2007.

12

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://pedram.redhive.com/PaiMei/docs/
http://www.hpl.hp.com/techreports/1999/HPL-1999-77.pdf
http://www.hpl.hp.com/techreports/1999/HPL-1999-77.pdf
http://www.cag.lcs.mit.edu/dynamorio/
http://cansecwest.com/core03/mad.zip
http://download.intel.com/design/PentiumII/manuals/24319202.pdf
http://download.intel.com/design/PentiumII/manuals/24319202.pdf
http://msdn2.microsoft.com/en-us/library/aa366573.aspx
http://msdn2.microsoft.com/en-us/library/aa366573.aspx
http://valgrind.org/docs/phd2004.pdf
http://pax.grsecurity.net/docs/pageexec.txt
http://pax.grsecurity.net/docs/pageexec.txt
https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
https://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://www.joestewart.org/ollybone/


[12] Valgrind. Valgrind.
http://valgrind.org/; accessed 4/30/2007.

13

http://valgrind.org/

	Introduction
	Strategies
	Dynamic Binary Instrumentation
	Design
	Implementation
	Considerations

	Page Access Interception
	Design
	Implementation
	Considerations

	Null Segment Interception
	Design
	Implementation
	Considerations


	Potential Uses
	Data Propagation
	Memory Access Isolation
	Thread Data Consistency

	Previous Work
	Conclusion

