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Chapter 1

Foreword

Abstract: Windows Vista x64 and recently hotfixed versions of the Windows
Server 2003 x64 kernel contain an updated version of Microsoft’s kernel-mode
patch prevention technology known as PatchGuard. This new version of Patch-
Guard improves on the previous version in several ways, primarily dealing with
attempts to increase the difficulty of bypassing PatchGuard from the perspec-
tive of an independent software vendor (ISV) deploying a driver that patches
the kernel. The feature-set of PatchGuard version 2 is otherwise quite simi-
lar to PatchGuard version 1; the SSDT, IDT/GDT, various MSRs, and several
kernel global function pointer variables (as well as kernel code) are guarded
against unauthorized modification. This paper proposes several methods that
can be used to bypass PatchGuard version 2 completely. Potential solutions to
these bypass techniques are also suggested. Additionally, this paper describes
a mechanism by which PatchGuard version 2 can be subverted to run custom
code in place of PatchGuard’s system integrity checking code, all while leaving
no traces of any kernel patching or custom kernel drivers loaded in the system
after PatchGuard has been subverted. This is particularly interesting from the
perspective of using PatchGuard’s defenses to hide kernel mode code, a goal
that is (in many respects) completely contrary to what PatchGuard is designed
to do.

Thanks: The author would like to thank skape, bugcheck, and Alex Ionescu.

Disclaimer: This paper is presented in the interest of education and the fur-
thering of general public knowledge. The author cannot be held responsible for
any potential use (or misuse) of the information disclosed in this paper. While
the author has attempted to be as vigilant as possible with respect to ensuring
that this paper is accurate, it is possible that one or more mistakes might re-
main. If such an inaccuracy or mistake is located, the author would appreciate
being notified so that the appropriate corrections can be made.
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Chapter 2

Introduction

With x64 versions of the Windows kernel, Microsoft has attempted to take an
aggressive stance [1] against the use of a certain class of techniques that have
been frequently used to “extend” the kernel in potentially unsafe fashions on
previous versions of Windows. This includes patching the kernel itself, hooking
the kernel’s system service tables, redirecting interrupt handlers, and several
other less common techniques for intercepting control of execution before the
kernel is reached, such as the alternation of the system call target MSR.

The technology that Microsoft has deployed to prevent the unauthorized patch-
ing of the kernel that has been historically rampant on x86 is known as Patch-
Guard. This technology was initially released with Windows Server 2003 x64
Edition and Windows XP x64 Edition (known as PatchGuard version 1). The
x64 editions of Windows Vista, and recently hotfixed versions of the Windows
Server 2003 x64 kernel contain a newer version of the PatchGuard technology,
known as PatchGuard version 2. The new version is designed to make it signif-
icantly more difficult for independent software vendors (ISVs) to deploy, in the
field, solutions that involve patching the kernel after disabling the kernel patch
protection mechanisms afforded by PatchGuard. The inner details of Patch-
Guard itself are much the same as they were in PatchGuard version 1 and thus
will not be discussed in detail in this paper (excluding version 2’s improved anti-
debugging and anti-patch technologies). A sufficiently interested reader wishing
some more background information on the subject may find out more about
how PatchGuard version 1 functions in Uninformed’s previous article [2] on the
subject, “Bypassing PatchGuard on Windows x64”.

PatchGuard version 2 takes the original PatchGuard release and attempts to
plug various holes in its implementation of an obfuscation-based anti-patching
system. In this respect, it has met some mixed success and failure. Although
the new PatchGuard version does, on the surface, appear to disable the major-

3



ity of the bypass techniques that had been proposed [2] as means to disable the
original PatchGuard release, at least several of these techniques may be fairly
trivially re-enabled through some minor alterations or additional new code. Fur-
thermore, it is still possible to bypass PatchGuard version 2 without relying on
dangerous (version-specific) constructs such as hard-coded offsets or code fin-
gerprinting on frequently changing code. Additionally, aside from techniques
that are based on disabling PatchGuard itself, there still exist several potential
bypass mechanisms that have a strong potential to be “future-compatible” with
new PatchGuard versions by virtue of preventing PatchGuard from even de-
tecting that unauthorized alternations to the kernel have been made (and thus
isolating themselves from any obfuscation-based changes to how PatchGuard’s
system integrity check is invoked). To Microsoft’s credit, however, the resilience
of PatchGuard to being debugged and analyzed has been significantly improved
(at least with regard to certain key steps, such as initialization at boot time).
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Chapter 3

Notable Protection
Mechanisms

PatchGuard version 2 implements a variety of anti-debug, anti-analysis, and
obfuscation mechanisms that are worth covering. Not all of PatchGuard’s de-
fenses are covered in detail in this paper, and those mechanisms (such as the
obfuscation of PatchGuard’s internal data structures) that are at least the same
in principle as the previous PatchGuard release (and were already disclosed by
Uninformed’s previous article [2] on PatchGuard) are additionally not covered
by this paper.

3.1 Anti-Debug Code During Initialization

That being said, there are still a number of interesting things to examine as far
as PatchGuard’s protection mechanisms go. Many of these techniques are on
their own worthy of discussion, simply from the perspective of their worth as
general debug/analysis protection mechanisms. PatchGuard version 2 begins as
an appended addition to the nt!SepAdtInitializePrivilegeAuditing routine
in the kernel (PatchGuard version 2 continues the tactic of misleading and/or
bogus function names that PatchGuard version 1 introduced). This routine is
responsible for performing the bulk of PatchGuard’s initialization, including set-
ting up the encrypted PatchGuard context data structures. Unlike PatchGuard
version 1, the initialization routine is littered with statements that are intended
to frustrate debugging, such as the following construct that enters an infinite
loop if a debugger is connected (this particular construct is used in many places
during PatchGuard initialization):

cli
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cmp cs:KdDebuggerNotPresent, r12b

jnz short continue_initialization_1

infinite_loop_1:

jmp short infinite_loop_1

sti

This particular approach is not all that robust as currently implemented in
PatchGuard version 2 today. It remains relatively easy to detect these references
to nt!KdDebuggerNotPresent ahead of time, and disable them. If Microsoft had
elected to corrupt the execution context in a creative way on each occurrence
(such as zeroing some registers, or otherwise arranging for a failure to occur
much later on if a debugger was attached) before entering the forever loop, then
these constructs might have been slightly effective as far as anti-debugging goes.

Other constructs include the highly obfuscated selection of a randomized set of
bogus pool tags used to allocate PatchGuard data structures. Like PatchGuard
version 1, PatchGuard version 2 uses a randomly chosen bogus pool tag and
randomly adjusted allocation sizes in an attempt to frustrate easy detection of
the PatchGuard context in-memory by scanning pool allocations. The following
is an example of one of the sections of code used by PatchGuard to randomly
pick a pool tag and random allocation delta from a list of possible pool tags.
The actual allocation size is the random allocation delta plus the minimum
size of the PatchGuard context structure, truncated at 2048 bytes. Here, the
rdtsc instruction is used for random number generation purposes (readers that
have examined the previous [2] PatchGuard paper may recognize this random
number generation construct; it is used throughout PatchGuard anywhere a
random quantity is required).

;

; Generate a random value, using rdtsc.

;

lea ebx, [r14+r13+200h]

mov dword ptr [rsp+0A28h+Timer], ebx

rdtsc

mov r10, qword ptr [rsp+0A28h+arg_5F8]

shl rdx, 20h

mov r11, 7010008004002001h

or rax, rdx

mov rcx, r10

xor rcx, rax

lea rax, [rsp+0A28h+var_2C8]

xor rcx, rax

mov rax, rcx

ror rax, 3

xor rcx, rax

mov rax, r11

mul rcx

mov [rsp+0A28h+var_2C8], rax

xor eax, edx

mov [rsp+0A28h+arg_1F0], rdx

;
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; This is essentially a switch(eax & 7), where eax

; is a random value. Each case statement selects

; a unique obfuscated pooltag value. The magical

; 0x432E10h constant below is the offset used to

; jump to the switch case handler selected.

;

lea rdx, cs:400000h

and eax, 7

mov ecx, [rdx+rax*4+432E10h]

add rcx, rdx

jmp rcx

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 0D098D0D8h

mov r9d, dword ptr [rsp+0A28h+var_9D8]

ror r9d, 6

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 0B2AD31A1h

mov r9d, dword ptr [rsp+0A28h+var_9D8]

rol r9d, 1

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 85B5910Dh

mov r9d, dword ptr [rsp+0A28h+var_9D8]

ror r9d, 2

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 0A8223938h

mov r9d, dword ptr [rsp+0A28h+var_9D8]

xor r9d, 3

ror r9d, 0Fh

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 67076494h

mov r9d, dword ptr [rsp+0A28h+var_9D8]

rol r9d, 4

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 288C49EDh

mov r9d, dword ptr [rsp+0A28h+var_9D8]

ror r9d, 5

jmp DoAllocation

--------------------------------------------------

mov dword ptr [rsp+0A28h+var_9D8], 4E574672h

mov r9d, dword ptr [rsp+0A28h+var_9D8]

xor r9d, 6

ror r9d, 18h

jmp DoAllocation

--------------------------------------------------

DoAllocation:

;

; Get another random value (for the allocation size),

; and deobfuscate the pooltag value that was selected.

;

; Eventually, the value ending up in "r9d" is used as

; the pooltag value.

;
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rdtsc

shl rdx, 20h

mov rcx, r10

or rax, rdx

xor rcx, rax

lea rax, [rsp+0A28h+var_858]

xor rcx, rax

mov rax, rcx

ror rax, 3

xor rcx, rax

mov rax, r11

mul rcx

mov [rsp+0A28h+ValueName], rdx

mov r9, rax

mov [rsp+0A28h+var_858], rax

xor r9d, edx

mov eax, 4EC4EC4Fh

mov ecx, r9d

mul r9d

shr edx, 3

shr r9d, 5

mov r8d, r9d

mov eax, 4EC4EC4Fh

imul edx, 1Ah

sub ecx, edx

add ecx, 61h

shl ecx, 8

mul r9d

shr edx, 3

shr r9d, 5

mov eax, 4EC4EC4Fh

imul edx, 1Ah

sub r8d, edx

mul r9d

add r8d, 41h

mov eax, 4EC4EC4Fh

or r8d, ecx

shr edx, 3

mov ecx, r9d

shr r9d, 5

shl r8d, 8

imul edx, 1Ah

sub ecx, edx

add ecx, 61h

or ecx, r8d

shl ecx, 8

mul r9d

shr edx, 3

imul edx, 1Ah

sub r9d, edx

add r9d, 41h

or r9d, ecx

rdtsc

shl rdx, 20h

mov rcx, r10

mov r8d, r9d ; Tag

or rax, rdx
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xor rcx, rax

lea rax, [rsp+0A28h+var_2E8]

xor rcx, rax

mov rax, rcx

ror rax, 3

xor rcx, rax

mov rax, r11

mul rcx

;

; Perform the actual allocation. We’re requesting NonPagedPool,

; with the random pooltag selected by the deobfuscation and

; randomization code above. The actual size of the block being

; allocated here is given in ebx, with a random "fuzz factor" that

; is added to this minimum allocation size, then truncated to a

; maximum of 2047 bytes.

;

xor ecx, ecx ; PoolType

mov [rsp+0A28h+var_310], rdx

xor rdx, rax

mov [rsp+0A28h+var_2E8], rax

and edx, 7FFh

add edx, ebx ; NumberOfBytes

call ExAllocatePoolWithTag

3.2 Expanded Set of DPC Routines

Other protection mechanisms used in PatchGuard version 2 include an expanded
set of DPC routines used to arrange for the execution of the PatchGuard in-
tegrity check routine. Recall that in PatchGuard version 1, there existed a set
of three possible DPC routines. In PatchGuard version 2, this set of potential
DPC routines that can be repurposed for PatchGuard’s use has been expanded
to ten possibilities. One DPC routine is selected at boot time from this set of ten
possiblities, and from that point is used for all further PatchGuard operations
for the lifetime of the session. The fact that only one DPC routine is used in
a particular Windows session is a weakness that is inherited from the previous
PatchGuard version (as the reader will discover, eventually comes in handy if
one is set on bypassing PatchGuard). The DPC routine to be used for the cur-
rent boot session is selected in the nt!SepAdtInitializePrivilegeAuditing
routine, much the same as how the bogus pooltag to be used for all PatchGuard
allocations is selected:

INIT:0000000000832741:

PatchGuard_Pick_Random_DPC:

;

; Use the time stamp counter as a random seed.

;

rdtsc

shl rdx, 20h

mov rcx, r15

or rax, rdx
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xor rcx, rax

lea rax, [rsp+0A28h+var_360]

xor rcx, rax

mov rax, rcx

ror rax, 3

xor rcx, rax

mov rax, 7010008004002001h

mul rcx

mov [rsp+0A28h+var_360], rax

mov rcx, rdx

mov qword ptr [rsp+0A28h+arg_260], rdx

xor rcx, rax

mov rax, 0CCCCCCCCCCCCCCCDh

mul rcx

shr rdx, 3

;

; The resulting value in ‘rax’ is the index into a switch jump table

; that is used to locate the DPC to be repurposed for initiating

; PatchGuard checks for this session.

;

lea rax, [rdx+rdx*4]

add rax, rax

sub rcx, rax

jmp PatchGuard_DPC_Switch

INIT:0000000000832317:

PatchGuard_DPC_Switch:

;

; The address of the case statement is formed by adding the image base (here,

; being loaded into ‘rdx’) and an RVA in the table indexed by rax.

;

lea rdx, cs:400000h

mov eax, ecx

;

; Locate the case statement RVA by indexing the jump offset table.

;

mov ecx, [rdx+rax*4+432E60h]

;

; Add it to the image base to form a complete 64-bit address.

;

add rcx, rdx

;

; Execute the case handler.

;

jmp rcx

;

; The set of case statements are as follows:

;

; Each case statement block simply loads the full 64-bit address

; of the DPC routine to be repurposed for PatchGuard checks into

; the r8 register. This register is later stored into one of

; PatchGuard’s internal data structures for future use.

;

lea r8, CmpEnableLazyFlushDpcRoutine
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jmp short PatchGuardSelectDpcRoutine

lea r8, _CmpLazyFlushDpcRoutine

jmp short PatchGuardSelectDpcRoutine

lea r8, ExpTimeRefreshDpcRoutine

jmp short PatchGuardSelectDpcRoutine

lea r8, ExpTimeZoneDpcRoutine

jmp short PatchGuardSelectDpcRoutine

lea r8, ExpCenturyDpcRoutine

jmp short PatchGuardSelectDpcRoutine

lea r8, ExpTimerDpcRoutine

jmp short PatchGuardSelectDpcRoutine

lea r8, IopTimerDispatch

jmp short PatchGuardSelectDpcRoutine

lea r8, IopIrpStackProfilerTimer

jmp short PatchGuardSelectDpcRoutine

lea r8, KiScanReadyQueues

jmp short PatchGuardSelectDpcRoutine

lea r8, PopThermalZoneDpc

;

; (fallthrough from last case statement)

;

INIT:0000000000832800:

PatchGuardSelectDpcRoutine:

xor ecx, ecx

;

; Store the DPC routine into r14+178. r14 points to one of

; the PatchGuard context structures in this particular instance.

;

mov [r14+178h], r8

Much like PatchGuard version 1, each of the DPCs selected for use in launching
the PatchGuard integrity checks has a legitimate function. Furthermore, the
DPC routines are ones that are important for normal system operation, thus
it is not possible for one to simply detect all DPCs that refer to these DPC
routines and cancel them. Instead, much as with PatchGuard version 1, if one
wanted to go the route of blocking PatchGuard’s DPC, a mechanism to detect
the particular PatchGuard DPC (as opposed to the legitimate system invoca-
tions thereof) must be developed. This aspect of PatchGuard’s obfuscation
mechanisms is relatively similar to version 1, other than the logical extension
to ten DPCs instead of three DPCs.

3.3 Self-Decrypting and Mutating System In-
tegrity Check Routine

PatchGuard version 2 also inherits the capability to encrypt its datastructures
and executable code in-memory from version 1. This is a defensive mechanism
that intends to make it difficult for an attacker to perform a classic egghunt style
search, wherein the attacker has devised an identifiable signature for Patch-
Guard data structures that can be used to locate it in an exhaustive non-paged-
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pool memory scan. From this perspective, the obfuscation and encryption of
PatchGuard code and data structures that are dynamically allocated is still a
reasonably strong defensive mechanism. Unfortunately for Microsoft, though,
some of the data structures linking to PatchGuard are internal system struc-
tures (such as a KDPC and associated KTIMER used to kick off PatchGuard
execution). This presents a weakness that could be potentially used to identify
PatchGuard structures in memory (which will be explored in more detail later).

The encryption of PatchGuard’s internal context structures was covered by Un-
informed’s original paper [2] on the subject. However, the mechanism by which
PatchGuard obfuscates its system integrity checking and validation routines was
not discussed. This mechanism is novel enough to warrant some explanation.
The technique used to obfuscate PatchGuard’s executable code in-memory in-
volves two layers of decryption/deobfuscation functions, each of which decrypts
the next layer. After both layers have run their course, PatchGuard’s validation
routines are plaintext in memory and are then directly executed.

The first decryption layer is the code block that is called from the repurposed
DPC routine selected by PatchGuard at boot time. Its job is to decrypt itself
(in 8 byte chunks, starting with the second instruction in the function). After
the decryption of the this code block is complete, the decryption stub continues
on to decrypt a second code block (the actual PatchGuard validation routine).
When this second decryption/deobfuscation cycle is completed, the decryption
stub then executes the actual PatchGuard system integrity check routine.

As noted above, the first task for the decryption stub is to decrypt itself. Except
for the first instruction of the stub, the entire routine is encrypted when entered.
The first instruction encrypts itself and decrypts the next instruction. The
following instruction decrypts the next two instructions, and soforth. This is
accomplished by a series of four byte long instructions that xor an eight byte
quantity with a decryption key (initially starting at the current instruction
pointer - here, rcx and rip always have the same value. An example of how
this process works is illustrated below:

;

; rcx: Address of the decryption stub (same as rip)

; rdx: Decryption key

;

Breakpoint 5 hit

nt!ExpTimeRefreshDpcRoutine+0x20a:

fffff800‘0112c98b ff5538 call qword ptr [rbp+38h]

0: kd> u poi(rbp+38)

;

; Note that beyond the first instruction, the decryption stub is initially seemingly

; garbage data (though it has an apparent pattern to it, since it is merely obfuscated

; by xor).

;

fffffadf‘f6e6d55d f0483111 lock xor qword ptr [rcx],rdx

fffffadf‘f6e6d561 88644d68 mov byte ptr [rbp+rcx*2+68h],ah

fffffadf‘f6e6d565 62 ???
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fffffadf‘f6e6d566 d257df rcl byte ptr [rdi-21h],cl

fffffadf‘f6e6d569 88644d78 mov byte ptr [rbp+rcx*2+78h],ah

fffffadf‘f6e6d56d 62 ???

fffffadf‘f6e6d56e d257ef rcl byte ptr [rdi-11h],cl

fffffadf‘f6e6d571 88644d48 mov byte ptr [rbp+rcx*2+48h],ah

0: kd> t

fffffadf‘f6e6d55d f0483111 lock xor qword ptr [rcx],rdx

0: kd> r

;

; Note the initial input arguments. rcx points to the decryption stub’s first

; instruction (same as rip), and rdx is the decryption key.

;

rax=fffffadff6e6d55d rbx=fffff8000116d894 rcx=fffffadff6e6d55d

rdx=601c55c0cf06e32a rsi=fffff800003c7ad0 rdi=0000000000000003

rip=fffffadff6e6d55d rsp=fffff800003c51f8 rbp=fffff800003c7ad0

r8=0000000000000000 r9=0000000000000000 r10=0000000001c7111e

r11=fffff800003c54c0 r12=fffff8000116d858 r13=fffff800003c5370

r14=fffff80001000000 r15=fffff800003c60a0

iopl=0 nv up ei pl zr na po nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00000246

fffffadf‘f6e6d55d f0483111 lock xor qword ptr [rcx],rdx ds:002b:fffffadf‘f6e6d55d=684d6488113148f0

;

; After allowing the decryption of the stub to progress, we see the stub in its executable

; form. The first instruction is initially re-encrypted after executed, but a later

; instruction in the decryption stub returns the initial instruction to its executable,

; plaintext form.

;

0: kd> u FFFFFADFF6E6D55D

;

; The ‘lock’ prefix is used to create a four byte instruction when there

; is no immediate offset specified (a MASM limitation, as the assembler

; will convert a zero offset into the shorter form with no immediate

; offset operand).

;

fffffadf‘f6e6d55d f0483111 lock xor qword ptr [rcx],rdx

fffffadf‘f6e6d561 48315108 xor qword ptr [rcx+8],rdx

fffffadf‘f6e6d565 48315110 xor qword ptr [rcx+10h],rdx

fffffadf‘f6e6d569 48315118 xor qword ptr [rcx+18h],rdx

fffffadf‘f6e6d56d 48315120 xor qword ptr [rcx+20h],rdx

fffffadf‘f6e6d571 48315128 xor qword ptr [rcx+28h],rdx

fffffadf‘f6e6d575 48315130 xor qword ptr [rcx+30h],rdx

fffffadf‘f6e6d579 48315138 xor qword ptr [rcx+38h],rdx

0: kd> u

fffffadf‘f6e6d57d 48315140 xor qword ptr [rcx+40h],rdx

fffffadf‘f6e6d581 48315148 xor qword ptr [rcx+48h],rdx

;

; Because the initial instruction was re-encrypted after it was executed,

; we need to decrypt it again.

;

fffffadf‘f6e6d585 3111 xor dword ptr [rcx],edx

fffffadf‘f6e6d587 488bc2 mov rax,rdx

fffffadf‘f6e6d58a 488bd1 mov rdx,rcx

fffffadf‘f6e6d58d 8b4a4c mov ecx,dword ptr [rdx+4Ch]

;

; The following is the second stage decryption loop. It’s purpose is to
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; decrypt a code block following the current decryption stub in memory.

;

; This code block is then executed (it is responsible for performing the

; actual PatchGuard system verification checks).

;

fffffadf‘f6e6d590 483144ca48 xor qword ptr [rdx+rcx*8+48h],rax

fffffadf‘f6e6d595 48d3c8 ror rax,cl

0: kd> u

fffffadf‘f6e6d598 e2f6 loop fffffadf‘f6e6d590

;

; After decryption of the second block is completed, we’ll execute it

; by jumping to it. Doing so kicks off the system verification routine

; that verifies system integrity, arranging for a bug check if not,

; otherwise arranging for itself to be executed again several minutes

; later.

;

fffffadf‘f6e6d59a 8b8288010000 mov eax,dword ptr [rdx+188h]

fffffadf‘f6e6d5a0 4803c2 add rax,rdx

fffffadf‘f6e6d5a3 ffe0 jmp rax

Prior to returning control, the verification routine re-encrypts itself so that it
does not remain in plaintext after the first invocation. In addition, Patch-
Guard also re-randomizes the key used to encrypt and decrypt the PatchGuard
validation routine on each execution, such that a would-be attacker has a fre-
quently mutating target. Due to this behavior, the PatchGuard validation rou-
tine changes appearance (in encrypted form) in-memory every few minutes,
which is the period of PatchGuard’s validation checks. While this is perhaps an
admirable effort on Microsoft’s part as far as interesting obfuscation techniques
go, it turns out that there are much easier avenues of attack that can be used to
disable PatchGuard without having to involve oneself in the search of a target
that alters its appearance in-memory every few minutes.

3.4 Obfuscation of System Integrity Check Calls
via Structured Exception Handling

Much like PatchGuard version 1, this version of PatchGuard utilizes structured
exception handling (SEH) support as an integral part of the process used to kick
off execution of the system integrity check routine. The means by which this
is accomplished have changed somewhat since the last PatchGuard version. In
particular, there are several layers of obfuscation in each PatchGuard DPC that
are used to shroud the actual call to the integrity check routine. In an effort
to make matters more difficult for would-be attackers, the exact details of the
obfuscation used vary between each of the ten DPCs that may be repurposed
for use with PatchGuard. They all exhibit a common pattern, however, which
can be described at a high level.
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The first step in invoking the PatchGuard system integrity checking routine is
a KTIMER with an associated KDPC (indicating a DPC callback routine to be
called when the timer lapses) associated with it. This timer is primed for single-
shot execution in an interval on the order of several minutes (with a random
fuzz factor delta applied to increase the difficulty of performing a classic egghunt
style attack to locate the KTIMER in non-paged pool). The DPC routine
indicated with the KDPC that is associated with PatchGuard’s KTIMER is
one of the set of ten legitimate DPC routines that may be repurposed for use
with PatchGuard. The means by which this particular invocation of the DPC
routine is distinguished from a legitimate system invocation of the DPC routine
in question is by the use of a deliberately invalid kernel pointer as one of the
arguments to the DPC routine.

The prototype for a DPC routine is described by PKDEFERRED ROUTINE:

typedef

VOID

(*PKDEFERRED_ROUTINE) (

IN struct _KDPC *Dpc, // pointer to parent DPC

IN PVOID DeferredContext, // arbitrary context - assigned at DPC initialization

IN PVOID SystemArgument1, // arbitrary context - assigned when DPC is queued

IN PVOID SystemArgument2 // arbitrary context - assigned when DPC is queued

);

Essentially, a DPC is a callback routine with a set of user-defined context param-
eters whose interpretation is entirely up to the DPC routine itself. The standard
use for context arguments in callback functions is to use them to point to a larger
structure which contains information necessary for the callback routine to func-
tion, and this is exactly how the ten DPC routines that can used by PatchGuard
regard the DeferredContext argument during legitimate execution. It is this us-
age of the DeferredContext argument which allows PatchGuard to trigger its
execution for each of the ten DPC routines via an exception; PatchGuard ar-
ranges for a bogus DeferredContext value to be passed to the DPC routine when
it is called. The first time that the DPC routine tries to dereference the DPC-
specific structure referred to by DeferredContext, an exception occurs (which
transfers control to the exception dispatching system, and eventually to Patch-
Guard’s integrity check routine). While this may seem simple at first, if the
reader is familiar with kernel mode programming, then there should be a couple
of red flags set off by this description; normally, it is not possible to catch bogus
memory references at DISPATCH LEVEL or above with SEH (usually, one of the
PAGE FAULT IN NONPAGED AREA or IRQL NOT LESS OR EQUAL bugchecks will be
raised, depending on whether the bogus reference was to a reserved non-paged
region or a paged-out pagable memory region). As a result, one would expect
that PatchGuard would be putting the system at risk of randomly bugchecking
by passing bogus pointers that are referenced at DISPATCH LEVEL, the IRQL
at which DPC routines run. However, PatchGuard has a couple of tricks up
its metaphorical sleeve. It takes advantage of an implementation-specific detail
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of the current generation of x64 processors shipped by AMD in order to form
kernel mode addresses that, while bogus, will not result in a page fault when
referenced. Instead, these bogus addresses will result in a general protection
fault, which eventually manifests itself as a STATUS ACCESS VIOLATION SEH ex-
ception. This path to raising a STATUS ACCESS VIOLATION exception does in
fact work even at DISPATCH LEVEL, thus allowing PatchGuard to provide safe
bogus pointer values for the DeferredContext argument in order to trigger SEH
dispatching without risking bringing the system down with a bugcheck.

Specifically, the implementation detail that PatchGuard relies upon relates to
the 48-bit address space limitation in AMD’s Hammer family of processors [4].
Current AMD processors only implement 48 bits of the 64-bit address space
presented by the x64 architecture. This is accomplished by requiring that bits
63 through the most significant bit implemented by the processor (current AMD
processors implement 48 bits) of any given address be set to either all ones or
all zeros. An address of this form is defined to be a canonical address, or a
well-formed address. Attempts to reference addresses that are not canonical as
defined by this definition result in the processor immediately raising a general
protection fault. This restriction on the address space essentially splits the
usable address space into two halves; one region at the high end of the address
space, and one region at the low end of the address space, with a no-mans-land
in between the two. Windows utilizes this split to divide user mode from kernel
mode, with the high end of the address space being reserved for kernel mode
usage and the low end of the address space being reserved for user mode usage.
PatchGuard takes advantage of this processor-mandated no-mans-land to create
bogus pointer values that can be safely dereferenced and caught by SEH, even
at high IRQLs.

All of the DPC routines that are in the set which may be repurposed for use by
PatchGuard dereference the DeferredContext argument as the first part of work
that does not involve shuffling stack variables around. In other words, the first
real work involved in any of the PatchGuard-enabled DPC routines is to touch
a structure or variable pointed to by the DeferredContext argument. In the
execution path of PatchGuard attempting to trigger a system integrity check,
the DeferredContext argument is invalid, which eventually results in an access
violation exception that is routed to the SEH registrations for the DPC routine.
If one examines any of the PatchGuard DPC routines, it is clear that all of them
have several overlapping SEH registrations (a construct that normally indicates
several levels of nested try/except and try/finally constructs):

1: kd> !fnseh nt!ExpTimeRefreshDpcRoutine

nt!ExpTimeRefreshDpcRoutine Lc8 0A,02 [EU ] nt!_C_specific_handler (C)

> fffff8000100358a La (fffff8000112c830 -> fffff80001000000)

> fffff8000100358a Lc (fffff8000112c870 -> fffff80001003596)

> fffff8000100358a L16 (fffff8000112c8a0 -> fffff80001000000)

> fffff8000100358a L18 (fffff8000112c8f0 -> fffff800010035a2)
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These SEH registrations are integral to the operation of PatchGuard’s system
integrity checks. The specifics of how each handler registration work differ
for each DPC routine (in an attempt to frustrate attempts to reverse engineer
them), but the general idea is that each registered handler performs a portion
of the work necessary to set up a call to the PatchGuard integrity check routine.
This work is divided up among four different exception/unwind handlers in an
effort to make it difficult to understand what is going on, but ultimately the end
result is the same for each of the DPC routines; one of the exception/unwind
handlers ends up making a direct call to the system integrity check decryption
stub in-memory. The decryption stub decrypts itself, and then decrypts the
PatchGuard check routine, following with a transfer of control to the integrity
check routine so that PatchGuard can inspect various protected registers, MSRs,
and kernel images (such as the kernel itself) for unauthorized modification.

Additionally, all of the PatchGuard DPCs have been enhanced to obfuscate
the DPC routine arguments in stack variables (whose exact stack displacement
varies from DPC routine to DPC routine, and furthermore between kernel flavor
to kernel flavor; for example, the multiprocessor and uniprocessor kernel builds
have different stack frame layouts for many of the PatchGuard DPC routines).
Recall that in the x64 calling convention, the first four arguments are passed via
registers (rcx, rdx, r8, and r9 respectively). Each PatchGuard DPC routine
takes special care to save away significant register arguments onto the stack
(in an obfuscated form). Several of the arguments remain obfuscated until just
before the decryption stub for the system integrity check routine is called, in
an effort to make it difficult for third parties to patch into the middle of a par-
ticular DPC routine and easily access the original arguments to the DPC. This
is presumably designed in an attempt to make it more difficult to differentiate
DPC invocations that perform the DPC routine’s legitimate function from DPC
invocations that will call PatchGuard. It also makes it difficult, though not im-
possible, for a third party to recover the original arguments to the DPC routine
from the context of any of the exception handlers registered to the DPC routine
in a generalized fashion.

This obfuscation of arguments can be clearly seen by disassembling any of the
PatchGuard DPC routines. For example, when looking at ExpTimeRefreshD-
pcRoutine, one can see that the routine saves away the Dpc (rcx) and Deferred-
Context (rdx) arguments on the stack, rotates them by a magical constant (this
constant differs for each DPC routine flavor and is used to further complicate
the task of recovering the original DPC arguments in a generalized fashion),
and then overwrites the original argument registers:

0: kd> uf nt!ExpTimeRefreshDpcRoutine

;

; On entry, we have the following:

;

; rcx -> Dpc

; rdx -> DeferredContext (if this is being called for

; PatchGuard, then DeferredContext
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; is a bogus kernel pointer).

; r8 -> SystemArgument1

; r9 -> SystemArgument2

;

nt!ExpTimeRefreshDpcRoutine:

;

; r11 is used as an ephemeral frame pointer here.

;

; Ephemeral frame pointers are an x64-specific compiler

; construct, wherein a volatile register is used as a

; frame pointer until the first function call is made.

;

fffff800‘01003540 4c8bdc mov r11,rsp

fffff800‘01003543 4881ecc8000000 sub rsp,0C8h

fffff800‘0100354a 4889642460 mov qword ptr [rsp+60h],rsp

;

; This DPC routine does not use SystemArgument1 or

; SystemArgument2. As a result, it is free to overwrite

; these argument registers immediately without preserving

; their value.

;

; r8 = Dpc

; rcx = Dpc

; rdx = DeferredContext

;

fffff800‘0100354f 4c8bc1 mov r8,rcx

fffff800‘01003552 4889542448 mov qword ptr [rsp+48h],rdx

;

; Set [rsp+20h] to zero. This is a state variable that is

; used by the exception/unwind scope handlers in order to

; coordinate the PatchGuard execution process across the

; set of four exception/unwind scope handlers associated

; with this section of code.

;

fffff800‘01003557 4533c9 xor r9d,r9d

fffff800‘0100355a 44894c2420 mov dword ptr [rsp+20h],r9d

;

; PatchGuard zeros out various key fields in the DPC.

; This is an attempt to make it difficult to locate the DPC

; in-memory from the context of an exception handler called

; when a PatchGuard DPC accesses the bogus DeferredContext

; argument. Specifically, PatchGuard zeros the Type and

; DeferredContext fields of the KDPC structure, shown below:

;

; 0: kd> dt nt!_KDPC

; +0x000 Type : UChar

; +0x001 Importance : UChar

; +0x002 Number : UChar

; +0x003 Expedite : UChar

; +0x008 DpcListEntry : _LIST_ENTRY

; +0x018 DeferredRoutine : Ptr64

; +0x020 DeferredContext : Ptr64 Void

; +0x028 SystemArgument1 : Ptr64 Void

; +0x030 SystemArgument2 : Ptr64 Void

; +0x038 DpcData : Ptr64 Void

;

; Dpc->Type = 0
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;

fffff800‘0100355f 448809 mov byte ptr [rcx],r9b

;

; Dpc->DeferredContext = 0

;

fffff800‘01003562 4c894920 mov qword ptr [rcx+20h],r9

;

; Here, the DPC loads [r11-20h] with an obfuscated

; copy of the DeferredContext argument (rotated

; left by 0x34 bits).

;

; Recall that rsp == r11+0xc8, so this location

; can also be aliased by [rsp+0A8h].

;

; [rsp+0A8h] -> ROL(DeferredContext, 0x34)

;

fffff800‘01003566 488bc2 mov rax,rdx

fffff800‘01003569 48c1c034 rol rax,34h

fffff800‘0100356d 498943e0 mov qword ptr [r11-20h],rax

;

; Similarly, the DPC loads [r11-48h] with an

; obfuscated copy of the Dpc argument (rotated

; right by 0x48 bits).

;

; This location may be aliased as [rsp+80h].

;

; [rsp+80h] -> ROR(Dpc, 0x48)

;

fffff800‘01003571 488bc1 mov rax,rcx

fffff800‘01003574 48c1c848 ror rax,48h

fffff800‘01003578 498943b8 mov qword ptr [r11-48h],rax

;

; The following register context is now in place:

;

; r8 = Dpc

; rcx = Dpc

; rdx = DeferredContext

; rax = ROR(Dpc, 0x48)

; [rsp+0A8h] = ROL(DeferredContext, 0x34)

; [rsp+80h] = ROR(Dpc, 0x48)

;

; The DPC routine destroys the contents of rcx by

; zero extending it with a copy of the low byte of

; the DeferredContext value.

;

fffff800‘0100357c 0fb6ca movzx ecx,dl

;

; The DPC routine destroys the contents of r8 with

; a right shift (unlike a rotate, the incoming left

; bits are simply zero filled instead of set to the

; rightmost bits being shifted off. The rightmost

; bits are thus lost forever, destroying the r8

; register as a useful source of the Dpc argument.

;

fffff800‘0100357f 49d3e8 shr r8,cl

;

; r8 is saved away on the stack, but it is no longer
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; directly useful as a way to locate the Dpc argument

; due to the destructive right shift above.

;

fffff800‘01003582 4c898424d8000000 mov qword ptr [rsp+0D8h],r8

;

; r8 = Dpc >> (UCHAR)DeferredContext

; rcx = (UCHAR)DeferredContext

; rdx = DeferredContext

; rax = ROR(Dpc, 0x48)

; [rsp+0A8h] = ROL(DeferredContext, 0x34)

; [rsp+80h] = ROR(Dpc, 0x48)

;

; Here, we temporarily deobfuscate the DeferredContext

; argument stored at [r11-20h] above. In this particular

; instance, rdx also happens to contain the deobfuscated

; DeferredContext value, but not all instances of

; PatchGuard’s DPC routines share this property of

; retaining a plaintext copy of DeferredContext in rdx.

;

fffff800‘0100358a 498b43e0 mov rax,qword ptr [r11-20h]

fffff800‘0100358e 48c1c834 ror rax,34h

;

; Now, we have the following context in place:

;

; r8 = Dpc >> (UCHAR)DeferredContext

; rcx = (UCHAR)DeferredContext

; rdx = DeferredContext (* But not valid for

; all DPC routines.)

; rax = DeferredContext

; [rsp+0A8h] = ROL(DeferredContext, 0x34)

; [rsp+80h] = ROR(Dpc, 0x48)

;

; The next step is to dereference the DeferredContext value.

; For a legitimate DPC invocation, this operation is harmless;

; the DeferredContext value would point to valid kernel memory.

;

; For PatchGuard, however, this triggers an access violation

; that winds up with control being transferred to the exception

; handlers registered to the DPC routine.

;

fffff800‘01003592 8b00 mov eax,dword ptr [rax]

At this point, it is necessary to investigate the various exception/unwind han-
dlers registered to the DPC routine in order to determine what happens next.
Most of these handlers can be skipped as they are nothing more than minor
layers of obfuscation that, while differing significantly between each DPC rou-
tine, have the same end result. One of the exception/unwind handlers, however,
makes the call to PatchGuard’s integrity check, and this handler is worthy of
further discussion. Because the exception registrations for all of the Patch-
Guard DPC routines make use of nt! C specific handler, the scope handlers
conform to a standard prototype, defined below:

//

// Define the standard type used to describe a C-language exception handler,
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// which is used with _C_specific_handler.

//

// The actual parameter values differ depending on whether the low byte of the

// first argument contains the value 0x1. If this is the case, then the call

// is to the unwind handler to the routine; otherwise, the call is to the

// exception handler for the routine. Each routine has fairly different

// interpretations for the two arguments, though the prototypes are as far as

// calling conventions go compatible.

//

typedef

LONG

(NTAPI * PC_LANGUAGE_EXCEPTION_HANDLER)(

__in PEXCEPTION_POINTERS ExceptionPointers, // if low byte is 0x1, then we’re an unwind

__in ULONG64 EstablisherFrame // faulting routine stack pointer

);

In the case of nt!ExpTimeRefreshDpcRoutine, the fourth scope handler regis-
tration is the one that performs the call to PatchGuard’s integrity check routine.
Here, the routine only executes the integrity check if a state variable stored at
[rsp+20h] in the DPC routine is set to a particular value. This state vari-
able is modified as the access violation exception traverses each of the excep-
tion/unwind scope handlers until it reaches this handler, which eventually leads
up to the execution of PatchGuard’s system integrity check. For now, it is best
to assume that this routine is being called with [rsp+20h] in the DPC routine
having been set to a value other than 0x15. This signifies that PatchGuard
should be executed.

0: kd> uf fffff8000112c8f0

nt!ExpTimeRefreshDpcRoutine+0x17f:

;

; mov eax, eax is a hotpatch stub and can be ignored.

;

fffff800‘0112c8f0 8bc0 mov eax,eax

fffff800‘0112c8f2 55 push rbp

fffff800‘0112c8f3 4883ec20 sub rsp,20h

;

; rdx corresponds to the EstablisherFrame argument.

; This argument is the stack pointer (rsp) value for

; the routine that this exception/unwind handler is

; associated with. The typical use of this argument

; is to allow seamless access to local variables in

; the routine for which the try/except filter is

; associated with. This is what eventually ends up

; occuring here, with the rbp register being loaded

; with the stack pointer of the DPC routine at the

; point in time where the exception occured.

;

;

fffff800‘0112c8f7 488bea mov rbp,rdx

;

; We make the check against the state variable.

; Recall that when the DPC routine was first entered,

; [rsp+20h] in the DPC routine’s context was set to
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; zero. That location corresponds to [rbp+20h] in

; this context, as rbp has been loaded with the stack

; pointer that was in use in the DPC routine. This

; location is checked and altered by each of the

; registered exception/unwind handlers, and will

; eventually be set to 0x15 when this routine is called.

;

fffff800‘0112c8fa 83452007 add dword ptr [rbp+20h],7

fffff800‘0112c8fe 8b4520 mov eax,dword ptr [rbp+20h]

fffff800‘0112c901 83f81c cmp eax,1Ch

;

; For the moment, consider the case where this jump is

; not taken. The jump is taken when PatchGuard is not

; being executed (which is not the interesting case).

;

fffff800‘0112c904 0f858c000000 jne nt!ExpTimeRefreshDpcRoutine+0x215 (fffff800‘0112c996)

nt!ExpTimeRefreshDpcRoutine+0x189:

;

; To understand the following instructions, it is

; necessary to look back at the stack variable context

; that was set up by the DPC routine prior to the

; faulting instruction that caused the access

; violation exception. The following values were

; set on the stack at that time:

;

; [rsp+0A8h] = ROL(DeferredContext, 0x34)

; [rsp+80h] = ROR(Dpc, 0x48)

;

; The following set of instructions utilize these

; obfuscated copies of the original arguments to the

; DPC routine in order to make the call to PatchGuard’s

; integrity check routine.

;

; The first step taken is to deobfuscate the Dpc value

; that was stored at [rsp+80h], or [rbp+80h] as seen from

; this context.

;

fffff800‘0112c90a 488b8580000000 mov rax,qword ptr [rbp+80h]

;

; rax = Dpc

;

fffff800‘0112c911 48c1c048 rol rax,48h

;

; [rbp+50h] -> Dpc

;

fffff800‘0112c915 48894550 mov qword ptr [rbp+50h],rax

;

; Next, the DeferredContext argument is deobfuscated and

; stored plaintext.

;

fffff800‘0112c919 488b85a8000000 mov rax,qword ptr [rbp+0A8h]

;

; rax = DeferredContext

;

fffff800‘0112c920 48c1c834 ror rax,34h

;
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; [rbp+58h] -> DeferredContext

;

fffff800‘0112c924 48894558 mov qword ptr [rbp+58h],rax

;

; rax = Dpc

;

fffff800‘0112c928 488b4550 mov rax,qword ptr [rbp+50h]

;

; The next instruction accesses memory after the KDPC

; object in memory. Recall that a KDPC object is 0x40

; bytes in length on x64, so [Dpc+40h] is the first

; value beyond the DPC in memory. In reality, the KDPC

; is a member of a larger structure, which is defined

; as follows:

;

; struct PATCHGUARD_DPC_CONTEXT {

; KDPC Dpc; // +0x00

; ULONGLONG DecryptionKey; // +0x40

; };

;

; As a result, this instruction is equivalent to casting

; the Dpc argument to a PATCHGUARD_DPC_CONTEXT*, and then

; accessing the DecryptionKey member

;

;

; rcx = Dpc->DecryptionKey

;

fffff800‘0112c92c 488b4840 mov rcx,qword ptr [rax+40h]

;

; [rbp+40h] -> DecryptionKey

;

fffff800‘0112c930 48894d40 mov qword ptr [rbp+40h],rcx

;

; rax = DecryptionKey

;

fffff800‘0112c934 488b4540 mov rax,qword ptr [rbp+40h]

;

; The DeferredContext value is then xor’d with the

; decryption key stored in the PATCHGUARD_DPC_CONTEXT

; structure. This yields the significant bits of the

; pointer to the PatchGuard decryption stub. Recall

; that due to the "no-mans-land" region in between the

; kernel mode and user mode address space boundaries

; on current AMD64 processors, the rest of the bits

; are required to be either all ones or all zeros in

; order to form a valid address. Because we are

; dealing with a kernel mode address, it can be safely

; assumed that all of the bits must be ones.

;

fffff800‘0112c938 48334558 xor rax,qword ptr [rbp+58h]

;

; [rbp+30h] -> DeferredContext ^ DecryptionKey

;

fffff800‘0112c93c 48894530 mov qword ptr [rbp+30h],rax

;

; Set the required bits to ones in the decrypted

; pointer, as required to form a canonical address on
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; current AMD64 systems.

;

fffff800‘0112c940 48b80000000000f8ffff mov rax,0FFFFF80000000000h

;

; [rbp+30h] -> [rbp+30h] | 0xFFFFF80000000000

;

; Now, [rbp+30h] is the pointer to the decryption stub.

;

fffff800‘0112c94a 48094530 or qword ptr [rbp+30h],rax

;

; The following instructions make extra copies of the decryption

; stub on the stack of the DPC routine. There is no real purpose

; to this, other than a half-hearted attempt to confuse anyone

; attempting to reverse engineer this section of PatchGuard.

;

; [rbp+38h] -> [rbp+30h] (Decryption stub)

;

fffff800‘0112c94e 488b4530 mov rax,qword ptr [rbp+30h]

fffff800‘0112c952 48894538 mov qword ptr [rbp+38h],rax

;

; [rbp+28h] -> [rbp+38h] (Decryption stub)

;

fffff800‘0112c956 488b4538 mov rax,qword ptr [rbp+38h]

fffff800‘0112c95a 48894528 mov qword ptr [rbp+28h],rax

;

; The next set of instructions rewrite the first

; four bytes of the initial opcode in the decryption

; stub. This opcode must be set to the following

; instruction:

;

; f0483111 lock xor qword ptr [rcx],rdx

;

; The individual opcode bytes for the instruction are

; written to the decryption stub one byte at a time.

;

; *(PULONG)DecryptionStub = 0x113148f0

;

fffff800‘0112c95e 488b4528 mov rax,qword ptr [rbp+28h]

fffff800‘0112c962 c600f0 mov byte ptr [rax],0F0h

fffff800‘0112c965 488b4528 mov rax,qword ptr [rbp+28h]

fffff800‘0112c969 c6400148 mov byte ptr [rax+1],48h

fffff800‘0112c96d 488b4528 mov rax,qword ptr [rbp+28h]

fffff800‘0112c971 c6400231 mov byte ptr [rax+2],31h

fffff800‘0112c975 488b4528 mov rax,qword ptr [rbp+28h]

fffff800‘0112c979 c6400311 mov byte ptr [rax+3],11h

;

; Finally, a call to the decryption stub is made. The

; decryption stub has a prototype that conforms to the

; following definition:

;

; VOID

; NTAPI

; PgDecryptionStub(

; __in PVOID PatchGuardRoutine,

; __in ULONG64 DecryptionKey,

; __in ULONG Reserved0,

; __in ULONG Reserved1
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; );

;

; The two ’reserved’ ULONG values are always set to zero.

;

; rcx is loaded with the address of the decryption stub,

; and rdx is loaded with the DecryptionKey value.

;

fffff800‘0112c97d 4533c9 xor r9d,r9d

fffff800‘0112c980 4533c0 xor r8d,r8d

fffff800‘0112c983 488b5540 mov rdx,qword ptr [rbp+40h]

fffff800‘0112c987 488b4d38 mov rcx,qword ptr [rbp+38h]

;

; At this point, control is transferred to the decryption

; stub, as described previously. The decryption stub will

; decrypt itself, decrypt the PatchGuard integrity check

; routine, and then transfer control to the PatchGuard

; integrity check routine. The integrity check routine is

; responsible for ensuring that the DPC is returned to a

; usable state (recall that parts of it were zeroed out

; by the DPC routine earlier), and that it is re-queued

; for execution. It is also responsible for re-encrypting

; the decryption stub as desired.

;

fffff800‘0112c98b ff5538 call qword ptr [rbp+38h]

;

; After the call is made, the exception filter returns

; the EXCEPTION_EXECUTE_HANDLER manifest constant. This

; causes one of the registered handlers to be invoked

; in order to handle the exception. The handler will

; transfer control to the return point of the DPC routine,

; thus skipping the body of the DPC (since the call to

; the DPC was not a request for the legitimate function of

; the DPC to be performed).

;

fffff800‘0112c98e 41b901000000 mov r9d,1

fffff800‘0112c994 eb03 jmp nt!ExpTimeRefreshDpcRoutine+0x218 (fffff800‘0112c999)

nt!ExpTimeRefreshDpcRoutine+0x215:

fffff800‘0112c996 4533c9 xor r9d,r9d

nt!ExpTimeRefreshDpcRoutine+0x218:

fffff800‘0112c999 418bc1 mov eax,r9d

fffff800‘0112c99c 4883c420 add rsp,20h

fffff800‘0112c9a0 5d pop rbp

fffff800‘0112c9a1 c3 ret

This does represent a significant level of obfuscation, but it is not impenetrable,
and there are various simple ways through which an attacker could bypass all
of these layers of obfuscation entirely.
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3.5 Disruption of Debug Register-Based Break-
points

PatchGuard version 2 attempts to protect itself from breakpoints that are set
using the hardware debug registers. These breakpoints operate by setting up
to four designated memory locations that are of interest. Each memory loca-
tion can be configured to cause a debug exception when it is read, written, or
executed. Because breakpoints of this flavor are not visible to PatchGuard’s
code integrity checks (unlike conventional breakpoints, these breakpoints do
not involve int 3 (0xcc) opcodes being substituted for target instructions), de-
bug register-based breakpoints (sometimes known as “memory breakpoints” or
“hardware breakpoints”) pose a threat to PatchGuard. PatchGuard attempts
to counter this threat by disabling all such debug register-based breakpoints
as a first step after the system integrity checking routine has been decrypted
in-memory:

;

; Here, the second stage decryption sequence is

; set to run to decrypt the system integrity

; check routine. We step over the second stage

; decryption and examine the integrity check

; routine in its plaintext state...

;

fffffadf‘f6edc043 8b4a4c mov ecx,dword ptr [rdx+4Ch]

fffffadf‘f6edc046 483144ca48 xor qword ptr [rdx+rcx*8+48h],rax

fffffadf‘f6edc04b 48d3c8 ror rax,cl

fffffadf‘f6edc04e e2f6 loop fffffadf‘f6edc046

fffffadf‘f6edc050 8b8288010000 mov eax,dword ptr [rdx+188h]

fffffadf‘f6edc056 4803c2 add rax,rdx

fffffadf‘f6edc059 ffe0 jmp rax

fffffadf‘f6edc05b 90 nop

;

; We set a breakpoint on the ’jmp rax’ instruction

; above. This instruction is what transfers control

; to the system integrity check routine.

;

0: kd> ba e1 fffffadf‘f6edc059

0: kd> g

Breakpoint 2 hit

fffffadf‘f6edc059 ffe0 jmp rax

;

; rax now points to the decrypted system

; integrity check routine in-memory. The

; first call it makes is to a routine whose

; purpose is to disable all debug register-based

; breakpoints by clearing the debug control

; register (dr7). Doing so effectively turns

; off all of the debug register breakpoints.

;

0: kd> u @rax

fffffadf‘f6edd8de 4883ec78 sub rsp,78h
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fffffadf‘f6edd8e2 48895c2470 mov qword ptr [rsp+70h],rbx

fffffadf‘f6edd8e7 48896c2468 mov qword ptr [rsp+68h],rbp

fffffadf‘f6edd8ec 4889742460 mov qword ptr [rsp+60h],rsi

fffffadf‘f6edd8f1 48897c2458 mov qword ptr [rsp+58h],rdi

fffffadf‘f6edd8f6 4c89642450 mov qword ptr [rsp+50h],r12

fffffadf‘f6edd8fb 488bda mov rbx,rdx

fffffadf‘f6edd8fe 4c896c2448 mov qword ptr [rsp+48h],r13

0: kd> u

fffffadf‘f6edd903 e8863a0000 call fffffadf‘f6ee138e

;

; The routine simply writes all zeros to dr7.

;

0: kd> u fffffadf‘f6ee138e

fffffadf‘f6ee138e 33c0 xor eax,eax

fffffadf‘f6ee1390 0f23f8 mov dr7,rax

fffffadf‘f6ee1393 c3 ret

3.6 Misleading Symbol Names

One of the things that Microsoft needed to consider when implementing Patch-
Guard is that would-be attackers would have access to the operating system
symbols. As a debugging aid, Microsoft makes symbols for the entire operat-
ing system publicly available. It is not feasible to remove the operating system
symbols from public access (doing so would severely hinder ISVs in the process
of debugging their own drivers). As a result, Microsoft took the route of using
misleading function names to shroud PatchGuard routines from casual inspec-
tion. Many of the internal PatchGuard routines have names that are seemingly
legitimate-sounding at first glance, such that without a detailed knowledge of
the kernel or actually inspecting these routines, it would be difficult to simply
look at a list of all symbols in the kernel and locate the routines responsible for
setting up PatchGuard.

The following is a listing of some of the misleading symbols that are used during
PatchGuard initialization:

1. RtlpDeleteFunctionTable

2. FsRtlMdlReadCompleteDevEx

3. RtlLookupFunctionEntryEx

4. SdbpCheckDll

5. FsRtlUninitializeSmallMcb

6. KiNoDebugRoutine

7. SepAdtInitializePrivilegeAuditing

8. KiFilterFiberContext
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3.7 Integrity Checks Performed During System
Initialization

During system initialization, PatchGuard performs integrity checks on several of
the anti-debug mechanisms it has in place. If these mechanisms are altered on-
disk, PatchGuard will detect the changes. For example, PatchGuard validates
that the routine responsible for clearing debug register-based breakpoints con-
tains the correct opcode bytes corresponding to the instructions used to actually
zero out Dr7:

;

; Here, we are in SepAdtInitializePrivilegeAuditing, or the

; initialization routine for PatchGuard during system startup.

;

; This code fragment is designed to validate that the

; KiNoDebugRoutine routine contains the expected opcodes that

; are used to zero out debug register breakpoints. If the

; routine does not contain the correct opcodes, PatchGuard

; makes an early exit from SepAdtInitializePrivilegeAuditing.

;

INIT:0000000000832A6D lea rax, KiNoDebugRoutine

INIT:0000000000832A74 cmp dword ptr [rax], 230FC033h

INIT:0000000000832A7A jnz abort_initialization

INIT:0000000000832A80 add rax, 4

INIT:0000000000832A84 cmp word ptr [rax], 0C3F8h

INIT:0000000000832A89 jnz abort_initialization

3.8 Overwriting PatchGuard Initialization Code
Post-Boot

After PatchGuard has initialized itself, it intentionally zeros out much of the
code responsible for setting up PatchGuard. It is assumed that this is done in
an attempt to prevent third party drivers from analyzing kernel code in-memory
in order to detect or defeat PatchGuard. This approach is obviously trivially
bypassed by opening the kernel image on disk, however.

After boot, many PatchGuard-related routines contain all zeros:

0: kd> u nt!KiNoDebugRoutine

nt!KiNoDebugRoutine:

fffff800‘011a4b20 0000 add byte ptr [rax],al

nt!FsRtlUninitializeSmallMcb:

fffff800‘011a4aa2 0000 add byte ptr [rax],al

0: kd> u nt!KiGetGdtIdt

nt!KiGetGdtIdt:
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fffff800‘011a4a20 0000 add byte ptr [rax],al

0: kd> u nt!RtlpDeleteFunctionTable

nt!RtlpDeleteFunctionTable:

fffff800‘011a1010 0000 add byte ptr [rax],al

Most of the PatchGuard initialization code resides in the INITKDBG section of
ntoskrnl. Portions of this section are zeroed out during initialization.
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Chapter 4

Bypass Techniques

Despite the myriad anti-reverse-engineering and anti-debug techniques employed
by PatchGuard version 2, it is hardly invincible to being bypassed by third party
code. Contrary to one might expect, given the descriptions in the initial section
of this article, there are a number of holes in PatchGuard’s armor that can be
exploited by third party software. Several potential techniques for bypassing
PatchGuard version 2 are outlined below, including one technique that includes
functional proof of concept code. These techniques are applicable to the version
of PatchGuard currently shipping with Windows XP x64 Edition with all hot-
fixes, Windows Server 2003 x64 Edition with all hotfixes, and Windows Vista
x64 with all hotfixes at the time that this article was written. The author has
only written a complete implementation of the first proposed bypass technique,
although the remaining proposed bypass approaches are expected to be viable
in principle.

4.1 Interception of C specific handler

The simplest course of action for disabling PatchGuard version 2 is, in the au-
thor’s opinion, to intercept execution at C specific handler. The C specific handler
routine is responsible for dispatching exceptions for routines compiled with the
Microsoft C/C++ compiler (and using try/except, try/finally, or try/catch
clauses). This set of functions includes all ten of the PatchGuard DPC rou-
tines and most other C/C++ functions in the kernel. It also includes many
third party driver routines as well; C specific handler is exported, and the
compiler references this function for all C/C++ images that utilize SEH in
some form (imported from ntoskrnl). Due to this, Microsoft is forced to ex-
port C specific handler from the kernel perpetually, making it difficult for
Microsoft to deny access to the routine’s address from the perspective of third
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party drivers. Furthermore, because C specific handler is exported from
the kernel, it is trivial to retrieve its address across all kernel versions from
the context of a third party driver. This approach capitalizes on the fact that
PatchGuard utilizes SEH in order to obfuscate the call to the system integrity
checking routine, in effect turning this obfuscation mechanism into a convenient
way to hijack execution control before the system integrity check is actually
performed.

This approach can be implemented in several different ways, but the basic idea is
to intercept execution somewhere between the faulting instruction in the Patch-
Guard DPC (whichever is selected at boot time), and the exception handlers
associated with the DPC routine which invoke the PatchGuard system integrity
check routine. With this in mind, C specific handler is exactly what one
could hope for; C specific handler is invoked when the benign access vio-
lation triggered by the bogus DeferredContext value to the PatchGuard DPC
routine is called. Furthermore, being exported, there are no concerns with com-
patibility with future kernel versions, or different flavors of the kernel (PAE vs
non-PAE, MP vs UP, and soforth).

Although hooking C specific handler provides a convenient way to gain con-
trol of execution in the execution path for the PatchGuard check routine, there
remains the problem of how to safely defuse the check routine and resume exe-
cution at a safe point such that DPCs continue to be processed by the system in
a timely fashion. On x86, this would pose a serious problem, as in this context,
we (as an attacker attempting to bypass PatchGuard) would gain control at an
exception handler with a context record describing the context at middle of the
PatchGuard DPC routine, with no good way to unwind the context back up to
the DPC routine’s caller (the kernel timer DPC dispatcher).

Ironically, by virtue of being only on x64 and not x86, this problem is made
trivial where it might have been difficult to solve in a generalized fashion on
x86. Specifically, there is extensive unwind support baked into the core of the
x64 calling convention on Windows, such that there exists metadata describing
how to unwind any function that manipulates the stack at any point in its
execution lifetime. This metadata is used to implement unwind semantics that
allow functions to be cleanly unwound without having to call exception/unwind
handlers implemented in code that depend on the execution context of the
routine they are associated with. This extensive unwind metadata can be used
to our advantage here, as it provides a clean mechanism to unwind past the
DPC routine (to the DPC dispatcher) in a completely compatible and kernel-
version-independent manner. Furthermore, there is no good way for Microsoft
to disable this unwind metadata, given how deeply involved it is with the x64
calling convention.

The process of using the unwind metadata of a function to unwind an execu-
tion context is known as a virtual unwind, and there is a documented, exported
routine [5] to implement this mechanism: RtlVirtualUnwind. Using RtlVirtu-
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alUnwind, it is possible to alter the execution context that is provided as an ar-
gument to C specific handler (and thus the hook on C specific handler).
This execution context describes the machine state at the time of the ac-
cess violation in the PatchGuard DPC routine. After performing a virtual
unwind on this execution context, all that remains is to return the mani-
fest ExceptionContinueExecution constant to the kernel mode exception dis-
patcher in order to realize the altered context. This completely bypasses the
PatchGuard system integrity check. As an added bonus, the hook on C specific handler
is only needed until the first time PatchGuard is called. This is due to the fact
that the PatchGuard timer is a one-shot timer, and as the code to re-queue the
timer is skipped by the virtual unwind, PatchGuard is effectively permanently
disabled for the remainder of the Windows boot session.

The last remaining obstacle with this bypass technique is filtering out the specific
PatchGuard access violation exceptions from legitimate access violations that
kernel mode code may produce. This is important, as access violations in kernel
mode are a normal part of parameter validation (the probe and lock model used
to validate user mode pointers) for drivers and system services. Fortunately, it is
easy to make this determination, as it is generally only legal to use a try/except
to catch an access violation relating to a user mode address from kernel mode
(as previously described). PatchGuard is a rare exception to this rule, in that it
has a well-defined no-mans-land region where accesses can be attempted without
fear of a bugcheck occurring. As a result, it is a safe assumption that any access
violation relating to a kernel mode address is either PatchGuard trigger its own
execution, or a very badly behaved third party driver that is grossly breaking
the rules relating to Windows kernel mode drivers. It is the author’s opinion
that the latter case is not worth considering as a blocker, especially since if
such a completely broken driver were to exist, it would already be randomly
bringing the system down with bugchecks. It is worth noting, as an addendum,
that the referenced address in the exception information block passed to the
exception handler will always be 0xFFFFFFFF‘FFFFFFFF due to how violations
on non-canonical addresses are reported by the processor. This does not impact
the viability of this technique as a valid way to bypass PatchGuard in a version-
independant manner, however.

It is worth noting that the fact that this technique involves modifying the ker-
nel is not a problem (aside from the inherent race conditions involved in safely
patching a running binary). The hook will disable PatchGuard before Patch-
Guard has a chance to notice the hook from the context of the system integrity
check routine.

This proposed approach has several advantages over the previously suggested
approach by Uninformed’s original paper on PatchGuard [2]. Specifically, it does
not involve locating each individual DPC routine (and does not even rely on any
sort of code fingerprinting; only exported symbols are used). This improves both
the reliability of the proposed approach (as code fingerprinting always introduces
an additional margin of error as far as false positives go) and its resiliency to
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attack by Microsoft. Because this technique relies solely on exported functions,
and does not carry any sort of dependency on how many possible DPCs are
available to PatchGuard for use (or any sort of dependency on locating them
at runtime), blocking this approach would be significantly more involved than
simply adding another possible DPC routine or changing the attributes of an
existing DPC routine in an effort to third-party drivers that were taking a
signature-based approach to locating DPC routines for patching.

Although this technique is quite resilient to kernel changes that do not directly
involve the underlying mechanisms by which PatchGuard itself functions (the
fact that it can operate unmodified on both Windows Server 2003 x64 and Win-
dows Vista x64 is testament to this fact), there are a number of different ways
by which Microsoft could block this attack in a future update to PatchGuard.
The most obvious solution is to entirely abandon SEH as a core mechanism
involved in arranging for the PatchGuard system integrity check. Abandoning
SEH removes the convenient mechanism (hooking C specific handler) that
is presented here as a version-independent way to hook in to the execution path
involved in PatchGuard’s system integrity check. If Microsoft were to go this
route, a would-be attacker would need to devise another mechanism to achieve
control of execution before the system integrity check runs. Assuming that
Microsoft played their hand correctly, a future PatchGuard revision would not
have such an easily-accessible mechanism to hook into the execution process in a
generic manner, largely counteracting this proposed approach. Microsoft could
also employ some sort of pre-validation of the exception handler path before the
DPC triggers an exception, although given that this is not the easiest and most
elegant way to counter such a technique, the author feels that it is an unlikely
solution.

4.2 Interception of DPC Exception Registration

Presently, all execution paths leading to the execution of PatchGuard DPC
routines involve an exception/unwind handler. This is another single point of
failure weakness that can be exploited by third parties attempting to disable
PatchGuard. An approach involving the detection of all of the PatchGuard
DPC routines, followed by interception of the exception handler registrations
for each DPC is proposed as another means of defeating PatchGuard.

Though this technique is not as clean or clear-cut as the technique proposed
in 4.1, this approach is considered by the author as a viable bypass mecha-
nism for PatchGuard version 2. This technique essentially involves patching
the exception registrations for each possible DPC routine that could be used
by PatchGuard, such that each exception registration points to a routine that
employs a virtual unwind to safely exit out of the PatchGuard DPC without
invoking the system integrity check. Any such approach faces several obstacles,
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however.

The first major difficulty for this technique is locating each PatchGuard DPC.
Since none of the PatchGuard DPC routines are exported, a little bit more
creative thinking is involved in finding the locations to patch. The author
feels that a combination of pattern matching and code fingerprinting would
best serve this goal; there are a number of commonalities between the different
PatchGuard DPC routines that could be used to locate them with a relatively
high degree of confidence in PatchGuard version 2. Specifically, the author feels
that the following criteria are acceptable for use in detecting the PatchGuard
DPC routines:

1. Each DPC routine has one exception/unwind-marked registration with
C specific handler.

2. Each DPC routine has exactly four C specific handler scopes.

3. Each DPC routine is referenced in raw address form (64-bit pointer) in
the executable code sections comprising ntoskrnl at least twice.

4. Each DPC routine has at least two C specific handler scopes with an
associated unwind/exception handler.

5. Each DPC routine has exactly one C specific hanlder scope with a
call to a common subfunction that references RtlUnwindEx (an exported
routine).

6. Each DPC routine has several sets of distinctive, normally rare instruc-
tions (ror/rol instructions).

Given several (or even all) of these criteria, it should be possible to accurately
locate all ten DPC routines via scanning non-pagable code in the kernel. It is
possible to locate the exception registration information for the DPC routines
through processing of the exception directory for the kernel (and indeed, most
of the criteria require doing this as a prerequisite). Locating the kernel image
base is fairly trivial as well; the address of an exported routine can be taken,
and truncated to a 64K region. From there, one need only perform downward
searches in 64K increments for the DOS header signature (followed by a check
for a PE32+ header).

Another hurdle that must be solved for this approach is the placement of the re-
placement exception handler routines. These routines are required to be within
4GB of the kernel image base (there is only a 32-bit RVA in the unwind meta-
data), meaning that in general, it is not practical to simply store them in a
driver binary or pool allocation (by default, these addresses are usually far
more than 4GB away from the kernel image base). There are no documented
and exported routines to allocate kernel mode virtual memory at a specific vir-
tual address to the author’s knowledge. However, other, less savory approaches
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could theoretically be taken (such as allocating physical memory and altering
paging structures directly to create a valid memory region within 4GB of the
kernel image base).

After one has solved these difficulties, the rest of this approach is fairly trivial
(and similar to portions of the technique described in 4.1.). Specifically, the
replaced exception handlers need to invoke RtlVirtualUnwind to unwind back
to the kernel DPC dispatcher, and then request that execution be resumed at
the unwound context.

This mechanism is not nearly as robust as the first in the author’s point of view,
though both approaches could be disabled by abandoning SEH entirely as a
critical path in the execution of the PatchGuard system integrity check routine.
Specifically, Microsoft could change the characteristics of the DPC routines in
an attempt to frustrate fingerprinting and detection of them at runtime. Pre-
validation of unwind metadata (or additional checks in the exception dispatcher
itself to ensure that all SEH routines registered as part of an image are within
the confines of the image in-memory) could also be used to defeat this technique.
There are other security benefits to validating that SEH routines on x64 that are
registered as part of an image really exist within an image, as will be discussed
below. As such, the author would expect this to appear in a future Windows
version.

4.3 Interception of PsInvertedFunctionTable

Another variation on the theme of intercepting PatchGuard within the SEH code
path critical to the system integrity check routine involves taking advantage
of an optimization that exists in the x64 exception dispatcher. Specifically,
it is possible to utilize the fact that the exception dispatcher on x64 uses a
cache to improve the performance of exception handling. By taking advantage
of this cache, it may be possible to intercept control of execution when the
PatchGuard DPC routine deliberately creates an access violation exception in
order to trigger the system integrity check. This proposed technique uses the
nt!PsInvertedFunctionTable global variable in the kernel, which represents
a cache used to perform a fast translation of RIP values to an associated image
base and exception directory pointer, without having to do a (slow) search
through the linked list of loaded kernel modules.

This technique is fairly similar to the one described in technique 4.2. Instead of
altering the actual exception directory entries corresponding to each Patch-
Guard DPC routine in the kernel’s image in-memory, this technique alters
the cached exception directory pointer stored within PsInvertedFunctionTable.
PsInvertedFunctionTable is consulted by RtlLookupFunctionTableEntry, in or-
der to translate a RIP value to an associated image (and unwind metadata
block). The logic within RtlLookupFunctionTable is essentially to search through
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the cached entries resident in PsInvertedFunctionTable for an image that cor-
responds to a given RIP value. If a hit is found, then the exception directory
pointer is loaded directly from the PsInvertedFunctionTable cache, instead of
through the (slower) process of parsing the PE header of the given image. If no
hit is found, then the loaded module linked list is searched. Assuming a hit is
made in the loaded module list, then the PE header for the associated module
is processed in order to locate the exception directory for the module. From
there, the exception directory is searched to locate the unwind metadata block
corresponding to the function containing the specified RIP value.

The structure backing PsInvertedFunctionTable (RTL INVERTED FUNCTION TABLE)
can be described as so in C:

typedef struct _RTL_INVERTED_FUNCTION_TABLE_ENTRY

{

PIMAGE_RUNTIME_FUNCTION_ENTRY ExceptionDirectory;

PVOID ImageBase;

ULONG ImageSize;

ULONG ExceptionDirectorySize;

} RTL_INVERTED_FUNCTION_TABLE_ENTRY, * PRTL_INVERTED_FUNCTION_TABLE_ENTRY;

typedef struct _RTL_INVERTED_FUNCTION_TABLE

{

ULONG Count;

ULONG MaxCount; // always 160 in Windows Server 2003

ULONG Pad[ 0x2 ];

RTL_INVERTED_FUNCTION_TABLE_ENTRY Entries[ ANYSIZE_ARRAY ];

} RTL_INVERTED_FUNCTION_TABLE, * PRTL_INVERTED_FUNCTION_TABLE;

In Windows Server 2003, there is space reserved for up to 160 loaded modules
in the array contained within PsInvertedFunctionTable. In Windows Vista,
this number has been expanded to 512 module entries. The array of loaded
modules is maintained by the system module loader such that when a module
is loaded or unloaded, a corresponding entry within PsInvertedFunctionTable
is created or deleted, respectively. It is not a fatal error for the module array
within PsInvertedFunctionTable to be exhausted; in this case, performance for
exception dispatching relating to additional modules will be slower, but the
system will still function.

Because the RIP-to-exception-directory cache described by PsInvertedFunc-
tionTable maintains a full 64-bit pointer to the exception directory of the associ-
ated module, it is possible to disassociate the cached exception directory pointer
from its corresponding image. In other words, it is possible to modify the Excep-
tionDirectory member of a particular cached RTL INVERTED FUNCTION TABLE ENTRY
to point to an arbitrary location instead of the exception directory of that mod-
ule. There are no security or integrity checks that validate that the ExceptionDi-
rectory member points to within the given image. This could be exploited by
a third-party driver in order to take control of exception dispatching for any of
the first 160 (or 512, in the case of Windows Vista) kernel modules. This loaded
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module list includes critical images such as the HAL (typically the first entry in
the cache) and the kernel itself (typically the second entry in the cache). With
respect to bypassing PatchGuard, this makes it possible for a third party driver
to copy the exception directory data of the kernel to dynamically allocated
memory and adjust it such that exception handlers for the PatchGuard DPC
routines point to a stub function that invokes a virtual unwind as described in
technique 4.2. After setting up its altered shadow copy of the exception direc-
tory for the kernel, all that a third party driver would need to do is swap the
ExceptionDirectory pointer within the PsInvertedFunctionTable cache entry for
the kernel with the pointer to the shadow copy. Following that, this approach is
essentially the same as the proposed approach described in 4.2. It has the added
advantage of being more difficult to detect from the perspective of validating
the integrity of the exception dispatching path, as the exception directory asso-
ciated with the kernel image in-memory is not actually altered; only a pointer
to the exception directory in a cache is changed.

This approach does require a reliable mechanism to detect PsInvertedFunc-
tionTable (which is not exported) at run-time, however. The author feels that
this is not a particularly difficult task, as the first few members of PsInverted-
FunctionTable (specifically, the maximum entry count and the entries for the
HAL and kernel) will have predictable values that can be used in a classic
egghunt style search of kernel global variable space. Additional heuristics, such
as requiring several data references to the suspected PsInvertedFunctionTable
location within kernel code could be applied as well, in the interest of improving
accuracy.

This proposed approach may be countered by many of the proposed counters to
techniques 4.1 and 4.2. Additionally, this technique could also be countered by
validating exception directory pointers within PsInvertedFunctionTable, such
as by ensuring that such exception directory pointers are within the confines of
the purported associated image. Although this validation is not perfect since it
might still be possible for one to reposition the exception directory pointer to
a different location within the image that could be safely modified at runtime,
such as overlapping a large global variable array or the like, it would certainly
increase the difficulty of subverting the exception dispatcher’s RIP translation
cache. Additional validation techniques, such as requiring that the exception
directory point to read-only memory, could be similarly adopted to reduce the
chance that a third party driver could meaningfully subvert the cache (with
results leading to something other than a system crash).

It should be noted that in the current implementation, PsInvertedFunctionTable
presents a relatively inviting target for potentially malicious software to hijack
parts of the kernel without being detected. Indeed, through careful planned
subversion of PsInvertedFunctionTable, third party software could take control
of exception dispatchers throughout the kernel in order to gain control of execu-
tion. Though this technique would be much more limited than outright kernel
patching, it has the advantage of being completely undetected by current Patch-
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Guard versions (which cannot validate global variables that may change without
notice at runtime, for obvious reasons). It also has the advantage of being unde-
tected by current rootkit detection systems, which are presently (to the author’s
knowledge) blissfully unaware of PsInvertedFunctionTable. Although it would
require administrative permissions (or an exploit granting such permissions) for
an attacker to modify PsInvertedFunctionTable in the first place, Microsoft has
at late focused a great deal of effort on protecting the kernel even from users with
administrator permissions. For example, one could conceive of a rootkit-style
program that intercepts exception dispatchers for system services, and passes
invalid user mode pointers to system services in order to surreptitiously execute
kernel mode code without detection when the standard pointer probe throws
an exception indicating that the given usermode pointer parameter is invalid.
Given this sort of threat (from the rootkit perspective), the author feels that it
would be in Microsoft’s best interests to put into place additional validation of
PsInvertedFunctionTable’s cached exception directory pointers (assuming that
Microsoft wishes to continue down the path of strengthening the kernel against
malicious administratively-privileged code).

4.4 Interception of KiDebugTrapOrFault

Although many of the proposed techniques for blocking PatchGuard have so
far relied on the fact that PatchGuard utilizes SEH to kick off execution of
the system integrity check, there are different approaches that can be taken
which do not rely on this specific PatchGuard implementation detail. One such
alternative technique for bypassing PatchGuard involves subverting the kernel
debug fault handler: KiDebugTrapOrFault. This handler represents the entry
point for all debug exceptions (such as so-called hardware breakpoints), and as
such presents an attractive target for bypassing PatchGuard.

The basis of this proposed technique is to utilize a set of hardware breakpoints
to intercept execution at a convenient critical location within PatchGuard’s ex-
ecution path leading up to the system integrity check. This technique has a
greater degree of flexibility than many of the previously described techniques,
though this flexibility comes at cost of a significantly more involved (and dif-
ficult) implementation. Specifically, one could use this proposed technique to
intercept control at any point critical to the execution of PatchGuard’s system
integrity check (for example, the kernel DPC dispatcher, one of the PatchGuard
DPC routines, or a convenient location in the exception dispatching code path,
such as C specific handler.

The means by which this interception of execution could be accomplished is by
assuming control of debug exception handling. This could be done in several dif-
ferent ways; for example, one could hook KiDebugTrapOrFault or alter the IDT
directory to simply repoint the debug exception to driver-supplied code, bypass-
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ing KiDebugTrapOrFault entirely. There are even ways that this interception
could be done in a way that is transparent to the current PatchGuard im-
plementation, such as by intercepting PsInvertedFunctionTable as described in
technique 4.3. A driver could then alter the unwind metadata for KiDebugTra-
pOrFault and create an exception handler for this routine. This step would allow
transparent, first-chance access to all debug faults (because KiDebugTrapOr-
Fault internally constructs and dispatches a STATUS SINGLE STEP exception de-
scribing the debug fault; normally, this would present the STATUS SINGLE STEP
exception to a debugger, but there is no technical reason why a standard SEH-
style exception handler could not catch the exception). Regardless of how con-
trol of execution at the debug trap handler is gained, the next step in this pro-
posed approach is to alter execution at the requested point of interest (whether
it be the kernel timer DPC dispatcher, which could be easily found by queu-
ing a DPC and executing a virtual unwind, or a PatchGuard DPC routine, or
C specific handler or any other place of interest in the critical PatchGuard
execution path) to prevent PatchGuard’s system integrity check from executing.

After the implementor has established control over the debug trap handler
(through whichever means desired), all that remains is to set debug-register-
based breakpoints on target locations. When these breakpoints are hit, control
is transferred to the debug trap handler, and from there to the implementor’s
driver code which can act as necessary, such as by altering the execution context
of the processor at the time of the exception before resuming execution.

The advantages of this approach over directly patching into kernel code (i.e.
opcode replacement) are threefold. First, it is more flexible in that there are no
difficulties with placing an absolute 64-bit jump in an arbitrary location (in x64,
this typically takes around 12 opcode bytes to do from any arbitrary location in
memory). For example, one does not have to worry about whether a the opcode
space overwritten by the jump might overlap a whole instruction boundary that
is a jump target, which might lead to invalid code being executed. Secondly,
this approach can be used to get out of having to implement a disassembler (or
other similar forms of code analysis) in kernel mode, as hardware breakpoints
allow one to gain control of execution at a precise location without having to
worry about creating enough space for a jump patch, and then placing the
original instructions back into a jump stub to allow execution to resume at the
original effective instruction stream (if desired). Finally, if done correctly, this
technique could be implemented in a truly race-condition free manner (as the
only patching that would need to be done is an interlocked 8-byte swap of a
pointer-aligned value in PsInvertedFunctionTable, if one took that approach).

This approach does require that the implementor pick a location (or multiple
locations) in the kernel that are to have breakpoints set over in order to gain
execution control. There are many possibilities, such as the DPC dispatcher
(where one could filter out the PatchGuard DPC by detecting, say, invalid
kernel pointers in DeferredContext), the execution dispatcher path (where one
could unwind past a PatchGuard DPC’s access violation exception), a Patch-
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Guard DPC itself (where one could again unwind past with RtlVirtualUnwind,
bypassing PatchGuard if the DPC is being invoked by PatchGuard), or any
other choice area. One of the advantages of this approach is that it is compar-
atively easy to intercept execution anywhere in the kernel that can be reliably
located across kernel versions, making it potentially a great deal more flexible to
being easily adapted to defeat future PatchGuard implementations than some
of the previously discussed bypass techniques.

Normally, the kernel has logic in place that prevents stray kernel addresses from
being placed in debug registers by user mode code via NtSetContextThread.
It may be necessary to make additional alterations to ensure that the custom
values in the debug registers are persisted across context switches, via the same
mechanisms used by the kernel debugger to persist debug registers.

In the author’s opinion, this technique would be difficult for Microsoft to defeat
in principle, barring hardware support (like virtualization). Although Microsoft
could move around critical code paths for PatchGuard, this technique presents a
general mechanism by which any location in the kernel could be surreptitiously
intercepted, thus lending itself to relatively easy adaptation to future Patch-
Guard revisions. One approach that could be taken is to perform increased
validation of the debug trap handler in an attempt to make it more difficult
to intercept without being detected by PatchGuard or some other validation
mechanism. Other counters to this sort of tactic (in general) would be to make
it difficult to reliably locate all of the critical code paths in a consistent and
reliable manner across all kernel versions, from the perspective of a third party
driver. This is likely to prove difficult, as a great deal of the internal workings of
the kernel are exposed in some way to drivers (i.e. exported functions), or are
otherwise indirectly exposed to drivers (i.e. trap labels via the IDT, exception
handlers via unwind metadata and exports used in the process of dispatching ex-
ceptions to SEH registrations). Completely insulating PatchGuard from all such
externally visible locations (that could be comparatively easily compromised by
a third party driver) would, as a result, likely be an arduous task.

The debug trap handler can be used to do more than simply evade PatchGuard
for purposes of allowing conventional kernel code patches via opcode replace-
ment. It can also be utilized in order to completely eliminate the need to perform
opcode-replacement-based kernel patches in order to gain execution control. In
this vein, via assuming control of the debug trap handler in a way that is trans-
parent to PatchGuard (such as via the proposed PsInvertedFunctionTable-based
approach), it would then be possible to set debug-register-based breakpoints at
every address of interest (assuming that there enough debug registers to patch
all of the locations of interest). From the debug trap handler, it is possible to
completely alter the execution context at the point of the debug exception, which
is exactly the same as what one could do via traditional opcode-replacement-
based patching for a given location. This sort of transparent patching would
be extremely difficult for Microsoft to detect, because the debug registers must
remain available for use by the kernel debugger. Without completely crippling
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the ability of the kernel debugger to set breakpoints without being attached
before PatchGuard is initialized, the author does not see a particularly viable
(i.e. without a trivial workaround) way for Microsoft to prevent the use of de-
bug registers to alter execution context at select points in the kernel (from a
third party driver). Because such an approach would capitalize on the fact that
Microsoft must, from a business case perspective, make it possible for IHVs and
ISVs to debug their code on Windows, the author believes that it would be
unlikely to be successfully disabled by Microsoft. Furthermore, because such
techniques can be implemented without even having the basic requirement of
disabling PatchGuard, they would be inherently much more likely to work with
future PatchGuard revisions. After all, if PatchGuard can’t even detect changes
to the kernel (because kernel code isn’t being patched), then there is no reason
to even bother with trying to disable it, which gets one out of the comparatively
messy business of playing catch-up with Microsoft with each new PatchGuard
revision.

4.5 General Detect Bit Interception

One of PatchGuard’s anti-debug mechanisms relates to debug registers. Specif-
ically, PatchGuard attempts to clear Dr7 (the debug control register) in an
attempt to disable all debug-register-based breakpoints, as one of the first tasks
upon entering the system integrity check routine. This presents an inherent
weakness within PatchGuard, as there is support built-in to the processor that
allows one to detect (and intercept) direct accesses to any of the debug regis-
ters. This support is primarily legacy, intended for so-called in-circuit emulators
(ICEs), which were special hardware components that acted as a true hardware-
based debugger by allowing one to control a processor from outside the context
of the system entirely, in essence truly isolating the debugger from the operating
system and any programs running under it. This support is embodied in the
General Detect bit in Dr7, which when set, causes a debug trap to be gener-
ated on any successful access to a debug register. This is significant in that
it provides a way for an attacker to trap PatchGuard’s access to Dr7 (zeroing
it), which in effect provides a means to pinpoint the exact location of Patch-
Guard’s system integrity routine in-memory, in-plaintext. Furthermore, it gives
an attacker the possibility of making any alterations desired to the execution
context at the very start of the system integrity check, which could be trivially
used in order to simply implement an immediate return out of the system in-
tegrity check logic without actually verifying the system’s integrity (as dr7 is
zeroed before any integrity checks are performed). This approach effectively
turns another one of PatchGuard’s protection mechanisms against it, utilizing
the anti-debug-register behavior to detect (and block) PatchGuard.

The general idea behind this approach is similar to that described in technique
4.4. In the same fashion as in technique 4.4, an implementor of this approach

41



is required to gain control of the debug trap handler. For this task, any of the
proposed approaches in technique 4.4 may be used. After control of the debug
trap handler is established, an attacker must then set the general detect bit
in Dr7 and wait for PatchGuard to access the debug registers. It should be
noted that during the legitimate course of execution, the kernel itself will often
directly access debug registers, such as during context switches or if NtSet-
ContextThread/NtGetContextThread are invoked. Any such implementation
of this technique must be able to differentiate between PatchGuard’s accesses
of the debug registers and legitimate accesses. This could be trivially imple-
mented by checking if the RIP value at the time of the trap was within a valid
kernel image or not, as the PatchGuard system integrity check routine resides in
dynamically allocated non-paged pool and not within the confines of the kernel
images in-memory.

When the debug trap handler is invoked as a result of PatchGuard zeroing Dr7,
then the appropriate action (which could be as trivial as simply executing a hard
return out of the system integrity check routine) can be taken by the third-party
driver wishing to disable PatchGuard.

Like the techniques that capitalize on PatchGuard’s use of SEH to obfuscate
the call to the system integrity check routine, this approach relies on using one
of PatchGuard’s defensive mechanisms against it. The most obvious counter
would be to thus remove the behavior of zeroing debug registers. However,
disabling this behavior may not be very desirable, as it would then be very
easy to detect PatchGuard by, say, setting a read breakpoint on kernel code
and waiting for PatchGuard to perform a read. Since reads of kernel code (as
opposed to execute fetches) are fairly atypical, this would open up another easy
mechanism by which PatchGuard could be bypassed.

The best course of action by Microsoft here would be to make it as diffi-
cult as possible to differentiate between legitimate accesses to debug registers
and PatchGuard’s own accesses, although this is likely to not be very doable.
Strengthening the debug trap path against interception by placing additional
validation checks over that code path might also be useful in countering this
technique, although likely to only a limited, easily-bypassable extent.

4.6 Patching the Kernel Timer DPC Dispatcher

Currently, PatchGuard utilizes a timer with an associated DPC to transfer con-
trol to a preselected one of ten possible legitimate DPC routines that have been
slightly modified for use with PatchGuard. Because third party kernel drivers
are given a documented and exported interface to create timers with associated
DPC routines, this represents a weakness in PatchGuard, in that it presents an
easily-detectable location in the critical execution path for PatchGuard’s sys-
tem integrity check routine that could be relatively easily compromised by a
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third-party driver. This technique focuses on gaining control of the timer DPC
dispatcher, with the goal of detecting when the PatchGuard DPC is about to
be dispatched. When the PatchGuard DPC is detected, then the third-party
driver could skip over the PatchGuard DPC routine entirely, thus disabling
PatchGuard.

In order to accomplish this, a third party driver would need to locate the ex-
act instruction within the kernel timer DPC dispatcher that is responsible for
making calls to timer DPC routines. Fortunately, this is a fairly easy task for
a driver, as the interfaces for creating timers with associated DPCs and DPC
routines are documented and exported. Specifically, a third party driver could
queue a timer DPC, and then record address of the DPC dispatcher routine
via inspection of the return address of the timer DPC routine when it is called.
From there, the driver can derive the address of the call instruction responsible
for making the call to the DPC routine associated with a DPC object that is
associated with a timer.

At this point, all a third party driver needs to do is patch the call instruction
in the DPC dispatcher to transfer execution control to the driver’s code. From
there, the driver can filter all timer DPCs for the PatchGuard DPC routine
(perhaps by looking for a bogus kernel address in DeferredContext, paired with
a DPC routine that is within the confines of the kernel image in-memory). When
the PatchGuard DPC is detected, then the driver can decline to call the DPC
routine and instead simply return control to the kernel DPC dispatcher after
the call instruction in the logical original instruction stream. This effectively
prevents PatchGuard from ever running the system integrity check, which again
gives the driver free reign to patch the kernel without fear of intervention by
PatchGuard.

In the author’s opinion, the best way to prevent this approach is to use a
multitude of different mechanisms to kick off execution of the PatchGuard check
routine. For example, a dedicated thread waiting on a timer could also be used,
or a frequently-called system routine could be modified to periodically make
calls to PatchGuard. As long as calls to PatchGuard are funneled through one
location, such as the timer DPC dispatcher, the entire PatchGuard integrity
check system is at risk of being trivially bypassed in one fell swoop by third
party drivers.

4.7 Searching for the PatchGuard DPC

PatchGuard currently uses a KTIMER object with an associated KDPC object,
both allocated within non-paged pool memory, as a periodic trigger used to start
PatchGuard’s system integrity check routine. It should be possible to locate this
timer object in memory and cancel it, preventing PatchGuard from executing.
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The implementation of this technique is essentially a classical egghunt style
search through non-paged pool, with some specially defined restrictions as to
how to find the target. Specifically, one is looking for a region of memory
matching the following criteria:

1. The memory is a valid KTIMER object. This means that the linked
list entries should be valid, and point to other seemingly valid KTIMER
objects (or the list head), and that the type field of the KTIMER is
consistent with a timer object.

2. The timer should have a timer interval in the range of several minutes.
PatchGuard applies a randomized fuzz factor to the timer interval (within
a small range), but verifying that the range of the timer is no more than
several minutes (say 7 or 8) should be an ample sanity check.

3. The timer should have a KDPC associated with it (and the pointer should
be valid non-paged pool).

4. The associated KDPC should have the appropriate type field.

5. The associated KDPC should have a DPC routine that is within the con-
fines of the kernel image in-memory.

6. The associated KDPC should have a DeferredContext value that is a non-
canonical kernel address.

After the DPC is found, it can simply be canceled in order to disable Patch-
Guard. Similar approaches as could be used to prevent technique 4.6 would be
applicable here. Specifically, a diversity in the set of paths leading up to Patch-
Guard’s execution would make a technique like this, which is targetted at one
path (such as the timer DPC dispatcher) less effective at blocking PatchGuard.

4.8 TLB Desynchronization (Split TLB)

All x86 processors supporting protected mode and paging employ a caching
scheme to speed up the translation of virtual addresses to physical addresses.
This scheme is implemented via a set of Translation Lookaside Buffers, or TLBs,
which cache the contents of the page attributes (and associated physical ad-
dress) for a given virtual address. Recent x86 processors (Pentium II-class or
later) utilize several sets of TLBs, such as one set of TLBs for data accesses
and one set of TLBs for instruction accesses. In normal system operation, both
TLBs (if a processor supports multiple TLBs) maintain consistent views for the
attributes of a particular page; however, it is possible to deliberately desynchro-
nize the contents of these TLBs, thereby maintaining the illusion that a sin-
gle page has different attributes depending on whether it is referenced as data
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or as executable code. This deliberate desynchronization of TLBs has many
uses, from the implementation of no-execute support (utilized by PaX/GRsec
on GNU/Linux [6]) to “memory cloaking”, a technique often used by rootkits
to provide one view of memory when memory is referenced as data by a read
operation, and a different view of memory if memory is referenced by an instruc-
tion fetch. This same memory cloaking technique that has appealed to rootkit
developers for the purpose of hiding rootkits from detection can also be used to
hide kernel patching from PatchGuard’s integrity check. Strictly speaking, this
proposed technique is not a bypass mechanism for PatchGuard; rather, it is a
mechanism to hide kernel patching from PatchGuard, thus making PatchGuard
harmless to third parties that are patching the kernel.

The details of this approach are essentially similar in many respects to that of
any program implementing a split-TLB approach to altering page attributes or
contents based on execute or read fetches. The exact details behind how this
can be accomplished are beyond the scope of this paper, and are discussed else-
where, by the PaX team (in the context of implementing no-execute on legacy
platforms) [6], and by Sherri Sparks and Jamie Butler (in the context of im-
plementing a Windows rootkit that utilizes split-TLBs to implement so-called
“memory cloaking”) [7]. Interested readers are encouraged to review these refer-
ences for the raw details on how the general split-TLB concept is implemented.
Although the referenced articles directly apply to x86, the concepts apply in
principle to x64 as well, and can likely be made to work on x64 with minimal
modification.

After one has established a mechanism for desynchronizing TLBs (such as by
hooking the page fault handler), the recommended approach for this technique is
to desynchronize the TLBs for any regions in the kernel where one is performing
traditional opcode-replacement-based patching or hooking. Specifically, when
kernel code is read for execute on a page where an opcode-replacement-based
patch is in place, then the patched page should be returned. If kernel code is
read for a data reference (such as PatchGuard making a read of kernel code to
validate its integrity), then the original data should be returned. This technique
effectively hides all modifications to kernel code to any access other than direct
execution, which prevents PatchGuard from detecting that kernel code has been
altered by a third party.

Note that in order for this approach to succeed, the hook on the page fault
handler itself must be hidden from PatchGuard. This cannot be directly ac-
complished by the same TLB desynchronization tactic, as the page fault han-
dler must remain resident. A combined approach, such as utilizing a debug
breakpoint on the page fault handler (when coupled with a subverted debug
trap handler, perhaps via PsInvertedFunctionTable as described previously in
technique 3) along with a scheme to prevent PatchGuard from disabling debug-
register-based breakpoints (such as described in technique 5) might be needed
in order to hook the page fault handler in a manner truly transparent to Patch-
Guard.
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The most logical defense for this approach is to attempt to detect a compromise
in the page fault dispatching path. Because TLB desynchronization cannot in
general be used to hide the page fault handler itself (the page fault handler must
remain marked present in memory), it would be difficult for a third party to
conceal the alteration to the page fault handler from the kernel. This difficulty
would be expressed in a limited number of ways in which alterations to the page
fault handler could be hidden, such as by clever utilization of debug registers.
As a result, the key to preventing this technique from remaining viable is to
develop a way for PatchGuard to detect the page fault hook. If, for example,
the debug trap handler and a debug breakpoint on the page fault handler were
used to gain control on a page fault, then Microsoft might be able to prevent this
technique by blocking or detecting the interception of the debug trap handler.
One such approach might be to better secure PsInvertedFunctionTable, which
represents an easy way for a third party to subvert the debug trap handler with-
out PatchGuard’s knowledge. Such counters will vary based on the mechanism
used to hide the page fault handler hook, however.

4.9 DPC Routine Patching

A variation on technique 4.2, a very simple-minded approach to disabling Patch-
Guard would be to simply hook every possible DPC routine, check if the DPC is
probably being called in order to execute PatchGuard’s system integrity check,
and if so, simply returning from the DPC to the kernel timer DPC dispatcher.
In order to implement this approach, one first needs to locate each possible
DPC routine. Technique 4.2 lists a number of viable algorithms for fingerprint-
ing (and locating) each DPC routine; any (preferably multiple) of the suggested
algorithms in that technique would be directly applicable to this proposed ap-
proach.

After one has identified all the possible DPC routines, all that is left is to
patch each one to branch to driver controlled code. From there, the driver
could make the decision as to whether the DPC is being invoked legitimately,
or whether it is being invoked as part of PatchGuard’s system integrity check
process (easily identified by a non-canonical kernel address being passed as
DeferredContext). If the DPC is PatchGuard-related, then all the driver need
do to block PatchGuard is to immediately return to the DPC dispatcher.

This approach is fairly trivial to prevent (from Microsoft’s point of view). Be-
cause it is signature-based, one possible counter-approach Microsoft could im-
plement would be determining which signatures third party drivers use to detect
PatchGuard DPCs, and altering the PatchGuard DPC routines to not match
those signatures in the next PatchGuard version. Microsoft could also change
the number of DPC routines to throw off drivers that assume PatchGuard will
use exactly ten DPCs, or Microsoft could switch to an alternative delivery mech-
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anism other than DPCs in order to prevent existing code that detects and hooks
specific DPC routines from blocking PatchGuard.
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Chapter 5

Subverting PatchGuard

PatchGuard currently possesses a formidable array of defensive mechanisms that
are aimed at making it difficult to reverse engineer and debug. Given that Mi-
crosoft does not currently have in place the infrastructure to make PatchGuard
enforced by hardware, this is arguably the best that Microsoft will ever really
be able to do in the short term. They’re only able to build a system that is
based on obfuscation and anti-debugging techniques in an attempt to make it
difficult for third parties to detect, disable, or bypass it.

There are other classes of software that seek to create defenses similar to those
of PatchGuard’s. However, these other classes usually have far more nefarious
purposes than preventing third parties from patching the kernel. Specifically,
anti-debugging, anti-reverse-engineering, and self-decrypting code have often
used been to hide viruses, rootkits, and other malicious software on compromised
systems.

Although Microsoft may have intended the defensive mechanisms employed by
PatchGuard for an (arguably) good cause, these same anti-debugging, anti-
detection, and anti-reverse-engineering techniques that protect PatchGuard from
attack by third party drivers can also be subverted to protect custom code from
detection or analysis by anti-virus or anti-rootkit software. With this respect,
Microsoft has created a double-bladed-sword, as the same elaborate obfuscation
and anti-debugging schemes that guard PatchGuard against third party soft-
ware can also be used to guard malicious software from system security software.
It is in fact quite possible to subvert PatchGuard version 2’s myriad defenses
to execute custom code instead of PatchGuard’s system integrity check routine.
While doing so might not be exactly called trivial, it is far from impossible.

In order to subvert PatchGuard to do one’s bidding, one must first catch Patch-
Guard in the act, so to speak. To accomplish this, the author recommends turn-
ing to one of the proposed bypass techniques as a starting place. For example,
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consider the first proposed bypass technique, wherein the author recommends
hooking C specific handler to intercept control of execution at the exception
generated by the PatchGuard DPC routine in order to trigger execution of the
system integrity check. An implementation of this bypass technique provides di-
rect access to the machine context inside the PatchGuard DPC routine, and this
machine context contains the information necessary to locate the PatchGuard
system integrity check routine.

Since the objective is to repurpose the system integrity check routine to ex-
ecute custom code, this is a good starting point. However, determining the
location of the system integrity check routine is much more involved than sim-
ply skipping over PatchGuard’s checks entirely; the pointer to the routine in
question is encrypted based off of the original arguments to the DPC (the Dpc
and DeferredContext arguments). Additionally, the original arguments to the
PatchGuard DPC have at this point already been moved from registers to the
stack and obfuscated (rotated left or right by a magical constant). As the origi-
nal contents of the argument registers are deliberately overwritten by the DPC
routine before the access violation is triggered, there is no choice other than
to somehow fish the DPC arguments out of the caller’s stack. This is actually
somewhat of a challenge, given that such an approach must work for all kernel
versions, and must also work for all of the different DPC permutations. Since
this set of possibilities represents an unmaintainably large number of routines
to reverse engineer in order to determine rotate obfuscation values and stack
offsets, a more generalized approach to locating the original arguments on the
stack must be taken. In order to create such a generic approach, one must take
a closer look at the first few instructions of each DPC routine (leading up to the
intentional access violation). Although PatchGuard has put into place several
barriers to prevent easy retrieval of the original arguments from this context,
there might be a pattern or weakness that could be exploited in order to recover
the arguments in question.

The basic things common to each DPC routine, when it comes to the machine
context at the time of the access violation, are:

1. The original arguments have been stored on the stack in an obfuscated
form (rotated left or right by an arbitrary magical constant).

2. The access violation always occurs by dereferencing rax. Here, rax is
always the deobfuscated form of the DeferredContext argument. This
gives us one of the arguments for free, as rax in the register context at
the time of the access violation is always the plaintext DeferredContext
value.

3. The stack location where the Dpc argument is stored at varies greatly
between DPC version to DPC version. Furthermore, it also varies between
different kernel flavors within an operating system family, and between
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operating system families. As a result, it is not practical to hardcode
stack displacements for this argument.

4. The instruction immediately prior to the faulting instruction is always
an instruction in the form of ror rax, <magical constant>. Here, the
magical constant is an immediate value, which means that it is encoded
as a part of the opcode for this instruction itself. Each DPC has its own
unique magical constant, and the magical constants used do not change
for a particular DPC flavor across all kernel flavors and operating system
families. This gives us a nice way to quickly identify which of the ten
PatchGuard DPCs is in use from the context of the C specific handler
hook (without having to do ugly code fingerprinting or analysis). Unfor-
tunately, we still don’t have a way to determine the stack displacement of
the Dpc argument.

5. The r8 register is always equal to the original Dpc argument, shifted
right by the low byte of the DeferredContext argument. Although this
may seem tantalizingly close to what we’re looking for, it can’t actually
be used as a substitute for the original Dpc argument, even though the
DeferredContext argument is known here (due to the value of rax). This
is because the right shift operation is destructive, in that information is
permanently lost as bits are shifted right off of the register into oblivion.
As a result, depending on the low byte of the DeferredContext argument,
important bits in the Dpc argument have already been permanently lost
in the pseudo-copy residing in r8.

Although the situation may initially appear grim, it is in fact still possible to
locate the Dpc argument given the above information; all that is needed is a bit
of work (and getting one’s hands dirty with some ugly tricks). Specifically, it is
possible to search the stack frame of the DPC routine for the Dpc argument with
a brute-force attack. This isn’t exactly elegant, but it gets the job done. There
are a number of hints that can be used to increase the chance of successfully
finding the real Dpc argument on the stack:

1. The stack is 8-byte aligned (at least) due to x64 calling convention require-
ments, and the Microsoft C/C++ compiler will always place pointer-sized
values on the stack in 8-byte-aligned locations. As a result, the search can
be narrowed down to 8-byte-aligned locations on the stack, instead of a
bytewise search.

2. Because the identity of the current DPC routine is known (due to ana-
lyzing the ror instruction immediately preceding the faulting mov eax,
[rax] instruction), the rotate constant used to obfuscate the Dpc argu-
ment is known. Each DPC routine has its own unique magical rotate
constant, and as the current DPC routine has been positively identified,
the rotate constant used to obfuscate the Dpc argument on the stack is
thus also known.
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3. A quick check as to whether a value on the stack could possibly be the Dpc
argument can be made by rotating the value on the stack by the known
obfuscation constant, then shifting the value right by the low byte in the
DeferredContext argument and comparing the result to the r8 value at the
time of the exception. If there is a mismatch, then the current stack loca-
tion can be eliminated from the search. This does not provide a positive
match, but it does provide a way to positively eliminate possibilities. This
step is also optional, in that it is still possible to locate the Dpc argument
without relying on r8; the check against r8 is simply an optimization.

4. The Dpc argument should point to a valid non-paged pool address, given
that it must represent a valid kernel pointer. In order to check that this is
the case, MmIsAddressValid can be used to test whether the deobfuscated
value in question is a valid pointer or not. (Yes, MmIsAddressValid is a
bit of a race condition and certainly a hack. The author would like to note
that this approach was described as requiring that the implementor get
his or her “hands dirty with some ugly tricks”, in an attempt to forstall
the inevitable complaints about how this approach might be decried as an
unstomachable ugly hack by some.)

5. The Dpc argument should point to a valid non-paged pool address whose
length is great enough to contain a KDPC object, plus at least one pointer-
sized additional field. A secondary MmIsAddressValid test can be used
to verify that the pointer describes a valid region large enough to contain
the KDPC object, plus the additional pointer-sized field following it (the
PatchGuard decryption key).

6. The Dpc argument should point to a DPC whose Type and DeferredCon-
text arguments have been zeroed. (The DPC routine intentionally zeros
these values in the DPC before intentionally triggering an access viola-
tion.) If the suspected Dpc argument, when treated as a PKDPC, does
not have these properties then it can be eliminated as a possibility.

By repeatedly applying these rules to every applicable location within a reason-
able distance upward from the rsp value at the time of the exception (say, 256
bytes, although the exact size can be greater; the only requirement is that the
entire local variable space of the DPC routine with the largest local variable
space is completely contained within the search region), it is possible to recover
the Dpc argument with virtual certainty. In the author’s experience, this tech-
nique works quite reliably, despite that one might intuit that a search of an
unknown stack frame might be prone to failing or turning up false positives.

After both the Dpc and DeferredContext arguments to the PatchGuard DPC
routine have been recovered, it is a simple matter of analyzing how PatchGuard
invokes the system integrity check in order to determine how to locate it in-
memory. This has been discussed previously, and it amounts to the following
set of statements:
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ULONG64 DecryptionKey, PatchGuardCheckFunction;

DecryptionKey = *(PULONG64)(Dpc + 0x40);

PatchGuardCheckFunction = DecryptionKey ^ DeferredContext;

PatchGuardCheckFunction |= 0xFFFFF80000000000;

At this point, it’s almost possible to replace the system integrity check routine
with custom code. However, there is still the matter of the pesky self-decrypting
stub that runs before the check function. Because the DPC routine’s exception
handler rewrites the first instruction of the stub before it is executed, one doesn’t
have a whole lot of choice but to implement at least a very basic version of the
decryption stub for the system integrity check routine.

Recall that the first instruction in the stub is set to the following:

lock xor qword ptr [rcx],rdx

Looking at the prototype for the decryption stub, rcx corresponds to the address
of the decryption stub itself, and rdx corresponds to the decryption key. Since
this instruction modifies both itself and the next instruction (the instruction is
four bytes long and the xor alters eight bytes), the replacement code for the
system integrity check routine must allow the first instruction to be the above
xor instruction, and the must allow for the second instruction (at a minimum)
to be initially xor-obfuscated. For simplicity’s sake, the author has chosen
to implement the simplest possible solution to this conundrum, which is to
make the second instruction in the replacement code a duplicate of the first
instruction. In other words, the replacement code would read as follows:

;

; This instruction is forced on us by PatchGuard,

; and cannot be altered; it is rewritten at runtime.

;

lock xor qword ptr [rcx],rdx

;

; The next instruction, conveniently four bytes

; long, re-encrypts itself by xoring the first

; eight bytes of the decryption stub (which includes

; the second instruction) by the decryption key a

; second time;

;

lock xor qword ptr [rcx],rdx

;

; (... any custom code may follow here ...)

;

As noted previously, after specially constructing the replacement code, it is
necessary to initially encrypt the second instruction (as it will be immediately
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decrypted by the first instruction). This must be done before control is returned
to PatchGuard.

After the custom code is configured and the second instruction is encrypted, all
that remains is to copy the custom code over the PatchGuard decryption stub.
When this is accomplished, the PatchGuard DPC’s exception handler will invoke
the supplied custom code instead of the system integrity check routine.

However, this is not really all that interesting due to the fact that PatchGuard
utilizes a one-shot timer. The custom code that was substituted for the decryp-
tion stub will never be run again. To account for this fact, it would be prudent
to place a call to queue a timer with an associated DPC routine (pointing to the
DPC routine that PatchGuard selected at boot) within the custom code block.

At this point, it is possible to simply allow the normal exception dispatching
process to continue (i.e. to resume C specific handler), after which the cus-
tom code will be invoked instead of PatchGuard. In essence, PatchGuard has
been not only disabled, but completely subverted to call customized code under
the control of a third party driver instead of the system integrity check.

Still, the situation is less than optimal. Presently, there is still a hook in
C specific handler that is there for anyone to see (and recognize that some-
one has tampered with the kernel). Additionally, the driver that was used to
subvert PatchGuard in the first place is still loaded, which may also be a tell-tale
giveaway sign that someone may have done something unsavory to the kernel.

These problems are also solvable, however. It turns out that after PatchGuard
has been subverted, it is safe to unhook from C specific handler, and then
simply call back into C specific handler after the hook is removed. Further-
more, everything necessary to run the subverted system integrity check routine
could even reside within PatchGuard’s own internal data structures; for ex-
ample, one could simply utilize extra space after the custom code, where the
decryption stub and PatchGuard check routine would normally reside as a pa-
rameter block. This is especially convenient, as the custom code block is given
a pointer to itself in rcx (the first argument), and it is easy to add a known
constant value to that pointer in order to retrieve the parameter block for the
custom code. At this point, all of the code and data necessary for the custom
code that the driver has subverted PatchGuard with is located in dynamically
allocated memory. Given this, the original driver is no longer needed and can
even be unloaded (so as to further disguise the fact that any alterations to the
kernel have taken place). After the driver has been unloaded, the only traces of
the alterations that have taken place would be the unloaded module list (easily
modified), and the re-written PatchGuard system integrity routine itself (which
could easily be bolstered to be self-decrypting (with a differing encryption key
in order to make for an extremely difficult to locate target in-memory).

The end result is that PatchGuard has been disabled, and in its place, arbi-
trary custom code is periodically executed. Furthermore, no modifications or
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patches to kernel code or global data are present and no suspicious drivers (or
even suspicious extraneous memory allocations) remain present in memory. In
essence, the only traces of the fact that PatchGuard has been subverted would
be visible only to someone (or something) that knows how to locate and disable
PatchGuard.

The supplied example program for subverting PatchGuard is fairly simple, and
it does not utilize all of the defensive technologies employed by PatchGuard. For
instance, it does not change the decryption key on every execution, nor does it
follow through with keeping the entire code block encrypted except just before
execution. These features could be easily added, however, and would greatly
increase the difficulty of locating the subverted PatchGuard code in memory.
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Chapter 6

Future Direction of
PatchGuard and
“Anti-Hack” Systems

In the future, there are a couple of generalized approaches that Microsoft could
take to significantly strengthen PatchGuard against attack. Specifically, these
involve adding redundancy and removing single points of failure from Patch-
Guard. It is often helpful to look at an anti-hack system like PatchGuard as a
critical system that one would like to keep running at all times with minimal
downtime (i.e. a network or service with high-availability). The logical way to
accomplish that goal is to locate and eliminate single points of failure, such as
by adding redundancy. In a high availability network, one would accomplish
this by adding redundant cables, switches, and the like, such that if one com-
ponent were to fail, the system as a whole would continue to operate instead
of failing entirely. With an anti-hack system such as PatchGuard, it is helpful
to add redundancy to all critical code paths such that there is no single point
where an attacker can simply change an opcode or hook in with the end result
of disabling the entire anti-hack system.

Removing these single points of failure is critical to the longevity of an anti-
hack system. The main concept to grasp in such cases is that the attacker
will always try to seek out the easiest way to break the defenses of the target
system. All the obfuscation and encryption in the world does little good if an
attacker can simply change a jmp to a nop and prevent elaborate encryption and
anti-debugging facilities from ever getting the chance to run. In this respect,
PatchGuard is flawed in its current implementation. There are many different
single points of failure where an attacker could inject themself at a single place
and completely disrupt PatchGuard.
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One possible solution to this problem might be to ensure that there are multi-
ple different code paths that can lead to every point in the PatchGuard system
integrity check. The nature of the battle between anti-hack systems and at-
tackers relates to how easy it is to bypass the weakest link in the anti-hack
system. Until all of the weak links in the system are shored up simultaneously,
the system remains much more vulnerable to easy attack or bypass. With this
respect, PatchGuard version 2 does little to improve on the weakest links of the
system and as such there are still a vast number of ways to bypass it. Even
worse, each bypass technique is often only required to attack one specific aspect
of PatchGuard in order to disable it as a whole.

As far as PatchGuard itself is concerned, one approach that Microsoft could
take to significantly increase the resiliency and robustness of the system to out-
side interference would be to merge some sort of critical system functionality
with the PatchGuard system integrity check. Such an approach would make
it difficult for a would-be attacker to simply bypass a call to PatchGuard, as
doing so would also bypass some sort of critical system functionality that would
(ideally) be required for the system to operate in any usable capacity. At this
point, the challenge for attackers then turns into either replicating the criti-
cal system functionality that is contained within PatchGuard, finding a way
to split the critical system functionality away from the system integrity check
portions of PatchGuard, or finding a way to evade PatchGuard’s detection of
kernel patching entirely. Microsoft can make the first two points arbitrarily diffi-
cult, especially since the knowledge of Windows internals is presumably greater
inside Microsoft than outside Microsoft. The incorporation of critical system
functionality would be theoretically easier for Microsoft to do than it would
be for would-be attackers to reliably reverse engineer and re-implement such
functionality on their own, forcing would-be attackers to take the hard route of
trying to separate PatchGuard from critical system functionality. This is where
clever use of obfuscation and anti-debug techniques would really see maximum
effectiveness, as an attacker would (optimally) have no choice other than to step
through and understand PatchGuard entirely before being able to replicate the
critical functionality contained within PatchGuard (or selectively activate the
critical functionality without activating the system integrity check).

The latter problem (evading PatchGuard detection entirely) is likely to be a
much more difficult one to tackle, however. Techniques such as the clever use
of debug registers, TLB desynchronization, and other related attacks are ex-
tremely difficult to detect (and typically very easy to alter to avoid detection
after a known detection scheme for such attacks is developed). In this particular
respect, Microsoft is presently at a great disadvantage. Improving PatchGuard
to avoid such evasion tactics is likely to prove both difficult and a poor invest-
ment of time relative to how quickly attackers can adapt and compensate for
Microsoft’s efforts at bolstering PatchGuard’s capabilities.

Looking towards the future, it can be expected that PatchGuard will ultimately
see the obfuscation-based defensive mechanisms currently in place substituted

56



with hardware-based defensive mechanisms. In particular, the author expects
that Microsoft will eventually deploy a PatchGuard version that is augmented by
the hardware-based virtualization (also known as hypervisor) support present in
recent processors (and being developed for Windows Server “Longhorn”, code-
named “Viridian”). An implementation of PatchGuard that is guarded by a
hypervisor would be immune to being simply patched out of existence (which
eliminates some of the most significant flaws in current versions of PatchGuard),
at least as long as the hypervisor itself remains secure and free from exploitable
bugs. In a hypervisor-based system with PatchGuard, third party drivers would
not be permitted to execute with hypervisor privileges, thus completely pre-
venting runtime patching of PatchGuard itself (which would be a part of the
privileged hypervisor layer). A hypervisor-based system might also be able to
implement concepts such as write-once memory that could be adapted to pre-
vent the kernel from being patched in the first place once it is initially loaded
into memory (as opposed to detecting patching after the fact, and bringing down
the system in response to third party drivers performing underhanded deeds).

Even with hypervisor support in-place, however, it is anticipated that there will
still be ways for third parties to alter the behavior of the kernel in ways not
completely authorized by Microsoft. For instance, as long as support for debug
registers must be retained in order for the kernel debugger to function, it may be
difficult to prevent an approach that utilizes debug registers to modify execution
context at arbitrary locations within the kernel (at least, not without making
the hypervisor completely responsible for managing all activities relating to the
processor’s complement of debug registers).
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Chapter 7

Conclusion

Although PatchGuard version 2 introduces significant improvements in some
areas, it still remains vulnerable to a wide variety of potential attacks. Addi-
tionally, it is possible (though involved) to subvert PatchGuard entirely, with
the purpose of running arbitrary custom code in a difficult-to-detect manner in
the place of PatchGuard.

With these points in mind, it is perhaps time to re-evaluate whether Patch-
Guard, in its current incarnation, is really worth all the trouble that Microsoft
has put into it. Although forcing the IHV and ISV world to clean house with
their kernel mode code is certainly a reasonable goal (and one which ultimately
benefits all Windows customers, no matter how certain companies with poorly
written kernel mode code [8] may care to spin the facts), as badly written kernel
mode code results in the chronic instability that Windows is often associated
with (at best), and privilege escalation and arbitrary code execution exploits in
the worst case. However, there are still significant counterpoints to what Patch-
Guard represents; the fact that it may provide a convenient way for malicious
kernel mode code to hide in a very difficult to detect manner, and that there is
real innovation that is stifled by the restrictions that PatchGuard places on the
system. As an example of the latter, consider that Microsoft’s very own Virtual
Server 2005 R2 SP1 (Beta) runs afoul of PatchGuard and requires a special ker-
nel hotfix to alter what, exactly, PatchGuard protects in order to run without
bugchecking the system with the infamous CRITICAL STRUCTURE CORRUPTION
bugcheck made famous by PatchGuard [3]. This alone should be taken as an
indicator that there are in fact legitimate uses for some of the techniques that
PatchGuard prevents, despite Microsoft’s insistence to the contrary. It should
also be noted that despite Microsoft’s statements that no exceptions would be
made for PatchGuard [1], they have had to make adjustments at least once for
their own code to run on PatchGuard. The conspiracy theorists among you
might wonder whether Microsoft would be so gracious as to make such exemp-
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tions for legitimate uses of techniques blocked by PatchGuard for third party
software with similar needs as Virtual Server 2005 R2 SP1, given their pointed
statements to the contrary.

As a final note relating to the objectives of PatchGuard, even with hypervisor
technology deployed (and furthermore, even with so-called immutable memory
as implemented by a hypervisor), there is little that can be done to protect
drivers from each other, as even in a hypervisor based system (where the ker-
nel itself is protected from drvers), interdependent drivers will still be able to
interfere with eachother so long as they co-exist in the same domain. This is
particularly problematic in Windows, given the concepts of device stacks and
device interfaces that allow drivers to directly interact with eachother in a vari-
ety of ways. It will be difficult to ensure that drivers do not resort to patching
eachother (or modifying pool allocations instead of patching code, in the case
where immutable memory on code regions is being enforced by a hypervisor).
Depending on what the objectives of a third party ISV attempting to bypass
PatchGuard are, it may be possible to simply patch drivers (such as Ntfs.sys or
Tcpip.sys) in lieu of patching the kernel. From this perspective, it is unlikely
that Windows will ever become an environment where kernel mode drivers are
completely isolated and unable to interfere with eachother, despite the efforts
of technologies such as PatchGuard.

Microsoft has already started down a path that may eventually lead to a system
where buggy drivers will be unable to crash the system (or patch eachother),
with the advent of the User Mode Driver Framework (UMDF). It remains to be
seen whether isolated user-mode based drivers will become a viable alternative
for high performance devices (such as PCI/PCI Express as opposed to USB
devices), however, instead of simply being confined to a small subset of of the
devices that ship with a typical computer. The author expects that whereever
possible, Microsoft will attempt to move third party code outside of sensitive
areas (like the kernel) and into more contained locations (such as a user-mode
process). This is in-line with the purported goals of PatchGuard; increasing
system stability by preventing third party drivers from performing questionable
actions (or at least, questionable actions in such a way that might bring down
the system).
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